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Scott A. Starks, Ph.D.

Pablo Arenaz, Ph.D.
Dean of the Graduate School



www.manaraa.com

This dissertation is dedicated to my deeply loved grandfather who passed away in 2003.

His wish to pursue a graduate study could not be fulfilled due to World War II.

And to my parents, my wife Qianyin and my son Kevin for their great love.



www.manaraa.com

FAST ALGORITHMS FOR COMPUTING STATISTICS
UNDER INTERVAL UNCERTAINTY,

WITH APPLICATIONS TO COMPUTER SCIENCE AND
TO ELECTRICAL AND COMPUTER ENGINEERING

by

GANG XIANG, B.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at El Paso

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

THE UNIVERSITY OF TEXAS AT EL PASO

December 2007



www.manaraa.com

UMI Number: 3304645

3304645
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

 by ProQuest Information and Learning Company. 



www.manaraa.com

Acknowledgements

I would like to express my deep-felt gratitude to my advisor, Dr. Vladik Kreinovich of the

Department of Computer Science at The University of Texas at El Paso, for his advice,

encouragement, enduring patience and constant support.

I also wish to thank the other members of my committee, Dr. Martine Ceberio and
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Abstract

In many engineering applications, we have to combine probabilistic and interval uncer-

tainty. For example, in environmental analysis, we observe a pollution level x(t) in a lake

at different moments of time t, and we would like to estimate standard statistical charac-

teristics such as mean, variance, autocorrelation, correlation with other measurements. In

environmental measurements, we often only measure the values with interval uncertainty.

We must therefore modify the existing statistical algorithms to process such interval data.

In this dissertation, we will provide a survey of known algorithms for computing various

statistics under interval uncertainty and their computational complexity, a description of

new algorithms, and the applications of the new algorithms, including applications to the

seismic inverse problem in geosciences, to chip design in computer engineering, and to radar

data processing.

vi



www.manaraa.com

Table of Contents

Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter

1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Computing Statistics is Important . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Interval Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Estimating Statistics Under Interval Uncertainty: a Problem . . . . . . . . 3

1.4 This Problem is a Part of a General Problem . . . . . . . . . . . . . . . . . 3

1.5 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Analysis of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Variance: Computing the Exact Range is Difficult . . . . . . . . . . . . . . 5

2.3 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Linearization is Not Always Acceptable . . . . . . . . . . . . . . . . . . . . 7

2.5 For this Problem, Traditional Interval Methods Sometimes Lead to Excess

Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 Straightforward Interval Computations . . . . . . . . . . . . . . . . 7

2.5.2 Centered Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.3 Constraint Solving Techniques . . . . . . . . . . . . . . . . . . . . . 10

2.6 For this Problem, Traditional Optimization Methods Sometimes Require

Unreasonably Long Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 We Need New Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

vii



www.manaraa.com

3 Reasonable Classes of Problems for Which We Can Expect Feasible Algorithms

for Statistics of Interval Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 First Class: Narrow Intervals . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Second Class: Slightly Wider Intervals . . . . . . . . . . . . . . . . . . . . 14

3.3 Third Class: Single Measuring Instrument . . . . . . . . . . . . . . . . . . 14

3.4 Fourth Class: Several MI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Fifth Class: Privacy Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Sixth Class: Non-Detects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Computing Statistics under Interval Uncertainty: Previously Known Algorithms,

Their Limitations, and New Algorithms . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Lower Bound for Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Upper Bound for Variance: General Case . . . . . . . . . . . . . . . . . . . 28

4.3 Upper Bound for Variance: Cases of Narrow Intervals and Slightly Wider

Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Upper Bound for Variance: New Case of Subset Property for Narrowed

Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Upper Bound for Variance: Case of Single Measuring Instrument (Case of

Subset Property) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.1 First New Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.2 Second New Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Discussion: Linear Time Algorithms vs. O(n · log(n)) Time Algorithms . . 42

4.7 Upper Bound for Variance: Case of Several MI . . . . . . . . . . . . . . . . 42

4.8 Upper Bound for Variance: Cases of Privacy and Non-detects . . . . . . . 43

viii



www.manaraa.com

4.9 Upper Bound for Variance: A New Algorithm Applicable to All Above-

Described Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9.1 Analysis of all above-described cases . . . . . . . . . . . . . . . . . 43

4.9.2 New result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.10 Other Statistical Characteristics – Outlier Detection . . . . . . . . . . . . . 47

4.10.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . 47

4.10.2 Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10.3 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.11 Other Statistical Characteristics – Skewness . . . . . . . . . . . . . . . . . 63

4.11.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . 63

4.11.2 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Geosciences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Seismic Inverse Problem: A Brief Description . . . . . . . . . . . . 70

5.1.2 New Result: Incorporate the Expert Knowledge into the Algorithm

for Solving the Inverse Problem . . . . . . . . . . . . . . . . . . . . 75

5.2 Computer Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Problem of Decreasing Clock Cycle: A Brief Introduction . . . . . . 80

5.2.2 New Result: General Techniques to Provide Robust Estimates for

the Clock Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Radar Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 New Result: A New Method for Solving the Problem . . . . . . . . 91

5.4 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.2 Inverse Halftoning is a Particular Case of a General Class of Inverse

Problems of Reconstructing Piecewise Smooth Images . . . . . . . . 106

ix



www.manaraa.com

5.4.3 New Complexity Result: Complexity of Inverse Problems of Recon-

structing Piecewise Smooth Images . . . . . . . . . . . . . . . . . . 110

5.4.4 Towards Possible Use of Interval Computations in Inverse Halftoning 112

5.4.5 New Algorithm for Interval-Motivated Inverse Halftoning . . . . . . 113

6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Formulation of the Problem: Reminder . . . . . . . . . . . . . . . . . . . . 117

6.2 Main Results of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Remaining Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

x



www.manaraa.com

List of Tables

4.1 Computational complexity of statistical analysis of interval data: previously

known results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Computational complexity of statistical analysis of interval data: an overview

including new results from this dissertation . . . . . . . . . . . . . . . . . . 21

xi



www.manaraa.com

Chapter 1

Formulation of the Problem

1.1 Computing Statistics is Important

In many engineering applications, we are interested in computing statistics. For example,

in environmental analysis, we observe a pollution level x(t) in a lake at different moments

of time t, and we would like to estimate standard statistical characteristics such as mean,

variance, autocorrelation, correlation with other measurements.

For each of these characteristics C, there is an expression C(x1, . . . , xn) that enables us

to provide an estimate for C based on the observed values x1, . . . , xn. For example:

• a reasonable statistic for estimating the mean value of a probability distribution is

the population average E(x1, . . . , xn) =
1

n
· (x1 + . . . + xn);

• a reasonable statistic for estimating the variance V is the population variance

V (x1, . . . , xn) =
1

n
·

n∑

i=1

(xi − E)2,

where E
def
=

1

n
·

n∑

i=1

xi.

Comment. The population variance is often computed by using an alternative formula

V = M − E2, where M =
1

n
· n∑

i=1
x2

i is the population second moment.

Comment. In many practical situations, we are interested in an unbiased estimate of the

population variance

Vu(x1, . . . , xn) =
1

n− 1
·

n∑

i=1

(xi − E)2.

In this dissertation, we will describe how to estimate V under interval uncertainty; since

Vu =
n

n− 1
· V , we can easily transform estimates for V into estimates for Vu.

1
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1.2 Interval Uncertainty

In environmental measurements, we often only measure the values with interval uncertainty.

For example, if we did not detect any pollution, the pollution value v can be anywhere

between 0 and the sensor’s detection limit DL. In other words, the only information that

we have about v is that v belongs to the interval [0, DL]; we have no information about

the probability of different values from this interval.

Another example: to study the effect of a pollutant on the fish, we check on the fish

daily; if a fish was alive on Day 5 but dead on Day 6, then the only information about the

lifetime of this fish is that it is somewhere within the interval [5, 6]; we have no information

about the distribution of different values in this interval.

In non-destructive testing, we look for outliers as indications of possible faults. To detect

an outlier, we must know the mean and standard deviation of the normal values – and these

values can often only be measured with interval uncertainty; see, e.g., [167, 175]. In other

words, often, we know the result x̃ of measuring the desired characteristic x, and we know

the upper bound ∆ on the absolute value |∆x| of the measurement error ∆x
def
= x̃− x (this

upper bound is provided by the manufacturer of the measuring instrument), but we have

no information about the probability of different values ∆x ∈ [−∆, ∆]. In such situations,

after the measurement, the only information that we have about the true value x of the

measured quantity is that this value belongs to interval [x̃−∆, x̃ + ∆].

In geophysics, outliers should be identified as possible locations of minerals; the impor-

tance of interval uncertainty for such applications was emphasized in [157, 158]. Detecting

outliers is also important in bioinformatics [187].

In bioinformatics and bioengineering applications, we must solve systems of linear equa-

tions in which coefficients come from experts and are only known with interval uncertainty;

see, e.g., [215].

In biomedical systems, statistical analysis of the data often leads to improvements in

medical recommendations; however, to maintain privacy, we do not want to use the exact

2
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values of the patient’s parameters. Instead, for each parameter, we select fixed values, and

for each patient, we only keep the corresponding range. For example, instead of keeping

the exact age, we only record whether the age is between 0 and 10, 10 and 20, 20 and

30, etc. We must then perform statistical analysis based on such interval data; see, e.g.,

[111, 209].

1.3 Estimating Statistics Under Interval Uncertainty:

a Problem

In all such cases, instead of the true values x1, . . . , xn, we only know the intervals x1 =

[x1, x1], . . . ,xn = [xn, xn] that contain the (unknown) true values of the measured quanti-

ties. For different values xi ∈ xi, we get, in general, different values of the corresponding

statistical characteristic C(x1, . . . , xn). Since all values xi ∈ xi are possible, we conclude

that all the values C(x1, . . . , xn) corresponding to xi ∈ xi are possible estimates for the

corresponding statistical characteristic. Therefore, for the interval data x1, . . . ,xn, a rea-

sonable estimate for the corresponding statistical characteristic is the range

C(x1, . . . ,xn)
def
= {C(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}.

We must therefore modify the existing statistical algorithms so that they compute, or

bound these ranges. This is the problem that we will be solving in this dissertation.

1.4 This Problem is a Part of a General Problem

The above range estimation problem is a specific problem related to a combination of

interval and probabilistic uncertainty. Such problems – and their potential applications

– have been described, in a general context, in the monographs [123, 203]; for further

developments, see, e.g., [18, 19, 20, 21, 60, 66, 127, 139, 180, 181, 206] and references

therein.

3
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1.5 Outline of the Dissertation

In Chapter 2, we analyze the problem of statistical analysis under interval uncertainty: we

describe traditional methods for such analysis and the limitations of these methods, thus

explaining why new methods are needed. Since in general, the corresponding problems are

computationally difficult (NP-hard), we can only expect efficient algorithms for particular

cases of these problems. In Chapter 3, we describe practically important cases of the

interval-based statistical analysis for which we would like to design efficient algorithms. In

Chapter 4, for different statistical characteristics, we describe the efficient algorithms that

were known before our research, and new algorithms that we propose in this dissertation.

Chapter 5 describes practical applications of these algorithms. Conclusions are given in

Chapter 6.

4



www.manaraa.com

Chapter 2

Analysis of the Problem

In the previous chapter, we formulated our main problem: computing statistical charac-

teristics under interval uncertainty. We also mentioned that this problem can be viewed

as a particular case of the general problem of interval computations. In this chapter, we

overview the basic techniques of interval computations, use these techniques to compute

statistics under interval uncertainty, and illustrate the limitation of this usage. The main

conclusion of this chapter is that while sometimes these generic interval techniques work

well, in general, we need to design new algorithms specifically tailored to computing statis-

tics.

2.1 Mean

Let us start our discussion with the simplest possible characteristic: the mean. The arith-

metic average E is a monotonically increasing function of each of its n variables x1, . . . , xn,

so its smallest possible value E is attained when each value xi is the smallest possible

(xi = xi) and its largest possible value is attained when xi = xi for all i. In other words, the

range E of E is equal to [E(x1, . . . , xn), E(x1, . . . , xn)]. In other words, E =
1

n
·(x1+. . .+xn)

and E =
1

n
· (x1 + . . . + xn).

2.2 Variance: Computing the Exact Range is Difficult

Another widely used statistic is the variance. In contrast to the mean, the dependence of

the variance V on xi is not monotonic, so the above simple idea does not work. Rather

5
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surprisingly, it turns out that the problem of computing the exact range for the variance

over interval data is, in general, NP-hard [64, 63] which means, crudely speaking, that

the worst-case computation time grows exponentially with n. Specifically, computing the

upper endpoint V of the range [V , V ] is NP-hard. Moreover, if we want to compute the

variance range or V with a given accuracy ε, the problem is still NP-hard. (For a more

detailed description of NP-hardness in relation to interval uncertainty, see, e.g., [110].)

2.3 Linearization

From the practical viewpoint, often, we may not need the exact range, we can often use

approximate linearization techniques. For example, when the uncertainty comes from mea-

surement errors ∆xi, and these errors are small, we can ignore terms that are quadratic

(and of higher order) in ∆xi and get reasonable estimates for the corresponding statistical

characteristics. In general, in order to estimate the range of the statistic C(x1, . . . , xn)

on the intervals [x1, x1], . . . , [xn, xn], we expand the function C in Taylor series at the

midpoint x̃i
def
= (xi + xi)/2 and keep only linear terms in this expansion. As a result, we

replace the original statistic with its linearized version Clin(x1, . . . , xn) = C0 −
n∑

i=1
Ci ·∆xi,

where C0
def
= C(x̃1, . . . , x̃n), Ci

def
=

∂C

∂xi

(x̃1, . . . , x̃n), and ∆xi
def
= x̃i − xi. For each i,

when xi ∈ [xi, xi], the difference ∆xi can take all possible values from −∆i to ∆i, where

∆i
def
= (xi − xi)/2. Thus, in the linear approximation, we can estimate the range of the

characteristic C as [C0 −∆, C0 + ∆], where ∆
def
=

n∑
i=1
|Ci| ·∆i.

In particular, if we take, as the statistic, the population variance C = V , then Ci =
∂V

∂xi

=
2

n
· (x̃i− Ẽ), where Ẽ is the average of the midpoints x̃i, and C0 =

1

n
·

n∑

i=1

(x̃i− Ẽ)2 is

the variance of the midpoint values x̃1, . . . , x̃n. So, for the variance, ∆ =
2

n
·

n∑

i=1

|x̃i− Ẽ| ·∆i.

It is worth mentioning that for the variance, the ignored quadratic term is equal to
1

n
·

n∑

i=1

(∆xi)
2 − (∆E)2, where ∆E

def
=

1

n
·

n∑

i=1

∆xi, and therefore, can be bounded by 0 from

below and by ∆(2) def
=

1

n
·

n∑

i=1

∆2
i from above. Thus, the interval [V0−∆, V0 + ∆ + ∆(2)] is a

6
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guaranteed enclosure for V.

2.4 Linearization is Not Always Acceptable

In some cases, linearized estimates are not sufficient: the intervals may be wide so that

quadratic terms can no longer be ignored, and/or we may be in a situation where we want

to guarantee that, e.g., the variance does not exceed a certain required threshold. In such

situations, we need to get the exact range – or at least an enclosure for the exact range.

Since, even for as simple a characteristic as variance, the problem of computing its

exact range is NP-hard, we cannot have a feasible-time algorithm that always computes

the exact range of these characteristics. Therefore, we must look for the reasonable classes

of problems for which such algorithms are possible. Let us analyze what such classes can

be.

2.5 For this Problem, Traditional Interval Methods

Sometimes Lead to Excess Width

Let us show that for this problem, traditional interval methods sometimes lead to excess

width.

2.5.1 Straightforward Interval Computations

Historically the first method for computing the enclosure for the range is the method which

is sometimes called “straightforward” interval computations. This method is based on the

fact that inside the computer, every algorithm consists of elementary operations (arithmetic

operations, min, max, etc.). For each elementary operation f(a, b), if we know the intervals

a and b for a and b, we can compute the exact range f(a,b). The corresponding formulas

form the so-called interval arithmetic. In straightforward interval computations, we repeat

7
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the computations forming the program f step-by-step, replacing each operation with real

numbers by the corresponding operation of interval arithmetic. It is known that, as a

result, we get an enclosure for the desired range.

For the problem of computing the range of finite population average, as we have men-

tioned, straightforward interval computations lead to exact bounds. The reason: in the

above formula for E, each interval variable only occurs once [79].

For the problem of computing the range of finite population variance, the situation is

somewhat more difficult, because in the expression (1.1), each variable xi occurs several

times: explicitly, in (xi − E)2, and explicitly, in the expression for E. In this cases, often,

dependence between intermediate computation results leads to excess width of the results

of straightforward interval computations. Not surprisingly, we do get excess width when

applying straightforward interval computations to the formula (1.1).

For example, for x1 = x2 = [0, 1], the actual V = (x1 − x2)
2/4 and hence, the actual

range V = [0, 0.25]. On the other hand, E = [0, 1], hence

(x1 − E)2 + (x2 − E)2

2
= [0, 1] ⊃ [0, 0.25].

It is worth mentioning that there are other formulas one can use to compute the variance

of a finite population: e.g., the formula

V =
1

n

n∑

i=1

x2
i − E2.

In this formula too, each variable xi occurs several times, as a result of which we get excess

width: for x1 = x2 = [0, 1], we get E = [0, 1] and

x2
1 + x2

2

2
− E2 = [−1, 1] ⊃ [0, 0.25].

Unless there is a general formula for computing the variance of a finite population in

which each interval variable only occurs once, then without using a numerical algorithm

(as contrasted with am analytical expression), it is probably not possible to avoid excess

interval width caused by dependence. The fact that we prove that the problem of computing

8
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of computing the exact bound for the finite population variance is computationally difficult

(in precise terms, NP-hard) makes us believe that no such formula for finite population

variance is possible.

2.5.2 Centered Form

A better range is often provided by a centered form, in which a range f(x1, . . . ,xn) of a

smooth function on a box x1 × . . .× xn is estimated as

f(x1, . . . ,xn) ⊆ f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi

(x1, . . . ,xn) · [−∆i, ∆i],

where x̃i = (xi + xi)/2 is the interval’s midpoint and ∆i = (xi − xi)/2 is its half-width.

When all the intervals are the same, e.g., when xi = [0, 1], the centered form does not

lead to the desired range. Indeed, the centered form always produced an interval centered

in the point f(x̃1, . . . , x̃n). In this case, all midpoints x̃i are the same (e.g., equal to 0.5),

hence the finite population variance f(x̃1, . . . , x̃n) is equal to 0 on these midpoints. Thus,

as a result of applying the centered form, we get an interval centered at 0, i.e., the interval

whose lower endpoint is negative. In reality, V is always non-negative, so negative values

of V are impossible.

The upper endpoint produced by the centered form is also different from the upper

endpoint of the actual range: e.g., for x1 = x2 = [0, 1], we have ∂f
∂x1

(x1, x2) = (x1 − x2)/2,

hence
∂f

∂x1

(x1,x2) =
x1 − x2

2
= [−0.5, 0.5].

A similar formula holds for the derivative with respect to x2. Since ∆i = 0, 5, the centered

form leads to:

f(x1, . . . ,xn) ⊆ 0 + [−0.5, 0.5] · [−0.5, 0.5] + [−0.5, 0.5] · [−0.5, 0.5] = [−0.5, 0.5]

– an excess width in comparison with the actual range [0, 0.25].

9
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2.5.3 Constraint Solving Techniques

The above methods can be often successfully supplemented by constraint solving tech-

niques. Specifically, sometimes, in addition to the intervals of possible values of the input,

we also know some constraints on the values of the desired characteristic. For example,

we know that the value V = V (x1, . . . , xn) of the population variance should always be

non-negative: V ≥ 0, or, in set-theoretic terms, V ∈ [0,∞).

In the above numerical example, from the result of straightforward interval computa-

tions, we know that V ∈ [−1, 1]. Since we also know that V ∈ [0,∞), we can there-

fore conclude that V belongs to the intersection of these two sets, i.e., to the interval

[−1, 1] ∪ [0,∞) = [0, 1]. This interval is twice narrower than the interval [−1, 1] that we

obtained without using constraints.

Similarly, from the result of using the centered form, we know that V ∈ [−0.5, 0.5]. Since

we also know that V ∈ [0,∞), we can therefore conclude that V belongs to the intersection

of these two sets, i.e., to the interval [−0.5, 0.5] ∪ [0,∞) = [0, 0.5]. This interval is twice

narrower than the interval [−0.5, 0.5] that we obtained without using constraints.

However, in both cases, we still have excess width in comparison with the actual range

[0, 0.25].

2.6 For this Problem, Traditional Optimization Meth-

ods Sometimes Require Unreasonably Long Time

A natural way to solve the problem of computing the exact range [V , V ] of the finite

population variance is to solve it as a constrained optimization problem. Specifically, to

find V , we must find the minimum of the function (1.1) under the conditions x1 ≤ x1 ≤ x1,

. . . , xn ≤ xn ≤ xn. Similarly, to find V , we must find the maximum of the function (1.1)

under the same conditions.

There exist optimization techniques that lead to computing “sharp” (exact) values of

10
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min(f(x)) and max(f(x)). For example, there is a method described in [93] (and effectively

implemented). However, the behavior of such general constrained optimization algorithms

is not easily predictable, and can, in general, be exponential in n.

For small n, this is quite doable, but for large n, the exponential computation time

grows so fast that for reasonable n, it becomes unrealistically large: e.g., for n ≈ 300, it

becomes larger than the lifetime of the Universe.

2.7 We Need New Methods

Summarizing: the existing methods are either not always efficient, or do not always provide

us with sharp estimates for V and V . So, we need new methods.

In this dissertation, we will describe several new methods for computing the variance

of the finite population, and start analyzing the problem of computing other population

parameters over interval data.

11
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Chapter 3

Reasonable Classes of Problems for

Which We Can Expect Feasible

Algorithms for Statistics of Interval

Data

As we have mentioned at the end of Chapter 2, in general, the problem of computing statis-

tics under interval uncertainty is NP-hard. So, we cannot expect feasible algorithms that

would solve all instances of this problem. Instead, we must look for practically reasonable

classes of problems for which provably feasible algorithms are possible. In this chapter, we

formulate practically reasonable classes for which we have succeeded in designing feasible

algorithms.

3.1 First Class: Narrow Intervals

As we have mentioned in Chapter 2, in science and engineering practice, the most widely

used uncertainty estimation technique is linearization. The main idea behind linearization

is that if the measurement errors ∆xi are small, we can safely ignore quadratic and higher

order terms in ∆xi and replace the original difficult-to-analyze expression by its easier-to-

analyze linear approximation. The accuracy of this techniques is determined by the size of

the first term that we ignore, i.e., is of size O(∆x2
i ). Thus, the narrower the intervals (i.e.,

the smaller the values ∆xi), the more accurate is the result of this linearization.
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In real life, we want to compute the range with a certain accuracy. So, when the intervals

are sufficiently accurate, the results of linearization estimation provide the desired accuracy

and thus, we have a feasible algorithm for solving our problem. When the intervals become

wider, we can no longer ignore the quadratic terms and thus, the problem becomes more

computationally complex. In other words, when intervals are narrower, the problem of

computing statistics under interval uncertainty becomes easier. It is therefore reasonable

to consider the case of narrow intervals as the first case in which we can expect feasible

algorithms for computing statistics of interval data.

How can we describe “narrowness” formally? The very fact that we are performing the

statistical analysis means that we assume that the actual values x1, . . . , xn come from a

probability distribution, and we want to find the statistical characteristics of this probability

distribution. Usually, this distribution is continuous: normal, uniform, etc. Formally, a

continuous distribution is a one for which a finite probability density ρ(x) exists for every

x. In this case, for every the real number a, the probability p =
∫ a+δ
a−δ ρ(x) dx to have a

random value within an interval [a− δ, a + δ] is approximately equal to ρ(a) · 2δ and thus,

tends to 0 as δ → 0. This means that for every value a, the probability to have a random

value exactly equal to a is 0. In particular, this means that with probability 1, all the

values x1, . . . , xn randomly selected from the original distribution are different.

The data intervals x1, . . . ,xn contain these different values x1, . . . , xn. When the inter-

vals xi surrounding the corresponding points xi are narrow, these intervals do not intersect.

When their widths becomes larger than the distance between the original values, the inter-

vals start intersecting.

Thus, the ideal case of “narrow intervals” can be described as the case when no two

intervals xi intersect.
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3.2 Second Class: Slightly Wider Intervals

Narrow intervals can be described as intervals which do not intersect at all. Namely, we

have a set of (unknown) actual values x1 < x2 < . . . < xn, and we have intervals around

each value which are so narrow that the neighboring intervals xi and xi+1 do not intersect.

As the widths of the intervals increase, they start intersecting. At first, only the neigh-

boring intervals xi and xi+1 intersect, but intervals xi and xi+2 still do not intersect. As

the widths increase further, intervals xi and xi+2 start intersecting, etc. When the intervals

become very wide, all n intervals intersect.

We can therefore gauge the degree of narrowness by the number of intervals which have

a common point.

Specifically, we define the case of slightly wider intervals as the situation when for some

integer K, no set of K intervals has a common intersection. The case of narrow intervals

correspond to K = 2, the next case is K = 3, etc. – all the way to the general case K = n.

As we have mentioned, the narrower the intervals, the easier the corresponding compu-

tational problem. Since the parameter K is a measure of this narrowness, it is therefore

reasonable to expect that feasible algorithms exist in this case – at least for values of K

which are not too large.

3.3 Third Class: Single Measuring Instrument

In Chapter 2, we have mentioned that one of the most widely used engineering techniques

for dealing with measurement uncertainty is linearlization. To be able to easily compute the

range C of a statistic C by using linearization, we must make sure not only that intervals

are relatively narrow, but also that they are approximately of the same size: otherwise, if,

say, ∆x2
i is of the same order as ∆xj, we cannot meaningfully ignore ∆x2

i and retain ∆xj.

In other words, the interval data set should not combine high-accurate measurement results

(with narrow intervals) and low-accurate results (with wide intervals): all measurements
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should have been done by a single measuring instrument (or at least by several measuring

instruments of the same type).

The traditional linearization techniques only provide us with an approximate range.

However, as we will show, for some classes of problems, these approximate estimates can

be refined into an efficient computation of the exact range. Because of this possibility,

let us formulate, in precise terms, the class of problems for which linearization is possible,

i.e., the class of problem for which all the measurements have been performed by a single

measuring instrument.

How can we describe this class mathematically? A clear indication that we have two

measuring instruments (MI) of different quality is that one interval is a proper subset of

the other one: [xi, xi] ⊆ (xj, xj).

This restriction only refers to not absolutely measurement results, i.e., to non-degenerate

intervals. In addition to such interval values, we may also have machine-represented floating

point values produced by very accurate measurements, so accurate that we can, for all

practical purposes, consider these values exactly known. From this viewpoint, when we

talk about measurements made by a single measuring instrument, we may allow degenerate

intervals (i.e., exact numbers) as well.

As we will see, the absence of such pairs is a useful property that enables us to compute

interval statistics faster. We will also see that this absence happens not only for measure-

ments made by a single MI, but also in several other useful practical cases. Since this

property is useful, we will give it a name.

Definition 1 We say that a collection of intervals satisfies a subset property if [xi, xi] 6⊆
(xj, xj) for all i and j for which the intervals xi and xj are non-degenerate.

3.4 Fourth Class: Several MI

After the single MI case, the natural next case is when we have several (m) MI, i.e., when

our intervals are divided into several subgroups each of which has the above-described
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subset property.

We have already mentioned that the case of a single MI is the easiest; the more MI we

involve, the more complex the resulting problem – all the way to the general case m = n,

when each measurement is performed by a different MI.

Since the parameter m is a measure of complexity, it is therefore reasonable to expect

that feasible algorithms exist for the case of a fixed number m – at least for the values of

m which are not too large.

3.5 Fifth Class: Privacy Case

In the previous text, we mainly emphasized that measurement uncertainty naturally leads

to intervals. It is worth mentioning, however, that interval uncertainty may also come

from other sources: e.g., from the desire to protect privacy in statistical databases. Indeed,

often, we collect large amounts of data about persons – e.g., during census, or during

medical experiments. Statistical analysis of this data enables us to find useful correlations

between, e.g., age and effects of a certain drug, or between a geographic location and income

level. Because of this usefulness, it is desirable to give researchers an ability to perform

a statistical analysis of this data. However, if we simply researchers to receive answers to

arbitrary queries and publish the results of their analysis, then these results may reveal the

information from the databases which is private and not supposed to be disclosed.

One way to protect privacy is not to keep the exact actual values of the privacy-related

quantities such as salary or age in the database. Instead, we fix a finite number of thresh-

olds, e.g., 0, 10, 20, 30 years, and for each person, we only record the corresponding age

range: from 0 to 10, or from 10 to 20, or from 20 to 30, etc. Since the actual values are

not stored in the database anymore, no queries can disclose these values.

So, this idea solves the privacy problem, but it opens up another problem: how can

perform statistical processing on this privacy-related interval data? Suppose that we are

interested in the values of a statistical characteristic C(x1, . . . , xn). If we knew the actual
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values x1, . . . , xn, then we could easily compute the value of this characteristic. However, in

case of privacy-related interval uncertainty, all we know is intervals xi = [xi, xi] of possible

values of xi. Different values xi ∈ xi lead, in general, to different values of C(x1, . . . , xn). So,

a reasonable idea is to return the range of possible values of the characteristic C(x1, . . . , xn)

when xi ∈ xi.

From the algorithmic viewpoint, we get the same problem as with measurement-related

interval uncertainty: find the range of the given characteristic C(x1, . . . , xn) on given in-

tervals x1, . . . ,xn. The difference between this case and the two previous cases is that, in

the first two cases, we do not know the exact values, while in this case, in principle, it is

possible to get the exact value, but we do not use the exact values, because we want to

protect privacy.

From the mathematical viewpoint, privacy-related intervals have the following property:

they either coincide (if the value corresponding to the two patients belongs to the same

range) or are different, in which case they intersect in at most point. Similarly to the above

situation, we also allow exact values in addition to ranges; these values correspond, e.g., to

the exact records made in the past, records that are already in the public domain.

We will call interval data with this property – that every two non-degenerate intervals

either coincide or intersect in at most one point – privacy case.

Comment. For the privacy case, the subset property is satisfied, so algorithms that work

for the subset property case work for the privacy case as well.

Comment. Sometimes, in the privacy-motivated situation, we must process interval data in

which intervals come from several different “granulation” schemes. For example, to find the

average salary in North America, we may combine US interval records in which the salary is

from 0 to 10,000 US dollars, from 10,000 to 20,000, etc., with the Canadian interval records

in which the ranges are between 0 to 10,000 Canadian dollars, 10,000 to 20,000 Canadian

dollars, etc. When we transform these records to a single unit, we get two different families

of intervals, each of which satisfies the subset property. Thus, to handle such situations,
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we can use algorithms developed for the several MI case.

3.6 Sixth Class: Non-Detects

An important practical case is the case of non-detects. Namely, many sensors are reasonably

accurate, but they have a detection limit DL – so they cannot detect any value below DL

but they detect values of DL and higher with a very good accuracy.

In this case, if a sensor returns a value x̃ ≥ DL, then this value is reasonably accurate,

so we can consider it exact (i.e., a degenerate interval [x̃, x̃]). However, if the sensor does

not return any signal at all, i.e., the measurement result x̃ = 0, then the only thing we can

conclude about the actual value of the quantity is that this value is below the detection

limit, i.e., that it lies in the interval [0, DL].

In this case, every interval is either an exact value or a non-detect, i.e., an interval

[0, DLi] for some real number DLi (with possibly different detection limits for different

sensors). Under this assumption, the resulting non-degenerate intervals also satisfy the

subset property. Thus, algorithms that work for the subset property case work for this

“non-detects” case as well.

Also, an algorithm that works for the general privacy case also works for the non-detects

case when all sensors have the same detection limit DL.

In the next chapter, we will describe the known and new algorithms for computing

statistics of interval data for the above classes.
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Chapter 4

Computing Statistics under Interval

Uncertainty: Previously Known

Algorithms, Their Limitations, and

New Algorithms

In this chapter, for lower and upper bounds on different statistical characteristics and for

different classes of interval uncertainty problems, we describe the efficient algorithms that

were known before our research, and new algorithms that we propose in this dissertation.

Each section describes a bound, a characteristic, and (if appropriate) a class of interval

uncertainty problems. Within each section, we have a subsection describing what was

known before, and subsection(s) describing new algorithms designed during this dissertation

work.

Previously known results about the computational complexity of different statistical

characteristics are summarized in the following table.

Here, E is a population mean, V is a population variance,

S
def
=

1

n
·

n∑

i=1

(xi − E)3

is population skewness, and L
def
= E − k0 · σ and U

def
= E + k0 · σ are endpoints of the

confidence interval, where a parameter k0 is usually taken as k0 = 2, k0 = 3, or k0 = 6.

The main results of this dissertation are summarized in the following table:
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Case E V L,U S

Narrow int. O(n) O(n2) O(n2) ?

Slightly wider

narrow int. O(n) O(n2) O(n2) ?

Single MI O(n) ? ? ?

Several (m) MI O(n) ? ? ?

Privacy case O(n) O(n2) O(n2) ?

Non-detects O(n) ? ? ?

General O(n) NP-hard NP-hard ?

Table 4.1: Computational complexity of statistical analysis of interval data: pre-
viously known results

Here, the “new case” (described later) is a generalization of the case of several MI.

4.1 Lower Bound for Variance

4.1.1 Known Results

In brief, the lower bound V can be always computed in time O(n · log(n)) [74].

The quadratic time algorithm for computing V . Before we review the O(n · log(n))

time algorithm, let us first review the first feasible algorithm for computing V , which

costs quadratic time, i.e., it takes O(n2) computational steps (arithmetic operations or

comparisons) for n interval data points xi = [xi, xi] [64].

The algorithm is as follows:

• First, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n).

20



www.manaraa.com

Case E V L,U S

Narrow int. O(n) O(n) O(n · log(n)) O(n2)

Slightly wider

narrow int. O(n) O(n · log(n)) O(n · log(n)) ?

Single MI O(n) O(n) O(n · log(n)) O(n2)

Several (m) MI O(n) O(nm) O(nm) O(n2m)

New case O(n) O(nm) ? ?

Privacy case O(n) O(n) O(n · log(n)) O(n2)

Non-detects O(n) O(n) O(n · log(n)) O(n2)

General O(n) NP-hard NP-hard ?

Table 4.2: Computational complexity of statistical analysis of interval data: an
overview including new results from this dissertation

• Second, we compute E and E and select all “small intervals” [x(k), x(k+1)] that inter-

sect with [E,E].

• For each of the selected small intervals [x(k), x(k+1)], we compute the ratio Ek = Sk/Nk,

where

Sk
def
=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj,

and Nk is the total number of such i’s and j’s. If Ek ∈ [x(k), x(k+1)], then we compute

Vk
def
=

1

n
·

 ∑

i:xi≥x(k+1)

(xi − Ek)
2 +

∑

j:xj≤x(k)

(xj − Ek)
2


 .

If Nk = 0, we take Vk
def
= 0.

• Finally, we return the smallest of the values Vk as V .

Let us check whether this algorithm really takes O(n2) steps: Sorting takes

O(n · log(n))
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steps. For each k, computing Ek or Vk takes O(n) steps, therefore, computing all possible

Ek and Vk takes O(n2) steps. Finally, finding the smallest Vk takes O(n) steps. Thus, we

can compute V in O(n2) steps.

Main idea behind this quadratic time algorithm. The algorithm for computing V

is based on the fact that when a function V attains a minimum on an interval [xi, xi], then

either
∂V

∂xi

= 0, or the minimum is attained at the left endpoint xi = xi – then
∂V

∂xi

> 0,

or the minimum is attained at the right endpoint xi = xi and
∂V

∂xi

< 0. Since the partial

derivative is equal to (2/n) · (xi − E), we conclude that either xi = E, or xi = xi > E,

or xi = xi < E. Thus, if we know where E is located in relation to all the endpoints, we

can uniquely determine the corresponding minimizing value xi for every i: if xi ≤ E then

xi = xi; if xi ≤ xi, then xi = xi; otherwise, xi = E. The corresponding value E can be

found from the condition that E is the average of all the selected values xi.

So, to find the smallest value of V , we can sort all 2n bounds xi, xi into a sequence

x(1) ≤ x(2) ≤ . . .; then, for each zone [x(k), x(k+1)], we compute the corresponding values xi,

find their variance Vk, and then compute the smallest of these variances Vk.

As we have mentioned, the corresponding value E can be found from the condition that

E is the average of all the selected values xi. If E is in the zone [x(k), x(k+1)], then we know

all the values xi. Let us denote the value of E as Ek if E is in the zone [x(k), x(k+1)], so

n · Ek should be equal to the sum of these values:

n · Ek =
∑

i:xi≥x(k+1)

xi + (n−Nk) · Ek +
∑

j:xj≤x(k)

xj,

where by Nk, we denoted the total number of such i’s for which xi ≥ x(k+1) and j’s for

which xj ≤ x(k).

Subtracting (n−Nk) ·E from both sides of this equality, we conclude that Nk ·Ek = Sk,

where

Sk
def
=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj.

If Nk = 0, this means that xi = Ek for all i, so V = 0. If Nk 6= 0, then Ek = Sk/Nk.
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Once Ek is computed, we check whether Ek ∈ [x(k), x(k+1)]. If this condition is satisfied,

we can now compute the corresponding variance Vk of all the selected values of xi.

The O(n · log(n) time algorithm for computing V . The most time-consuming step

in the above-described quadratic time algorithm is the step to compute all possible Ek and

Vk, which alone takes quadratic time. There exists an improved algorithm which reduces

the time in this step and only takes O(n · log(n) steps overall [74].

The improved algorithm differs from the quadratic time algorithm in the way of comput-

ing all possible Ek and Vk: Once Ek is computed, we can now compute the corresponding

variance Vk as Mk − E2, where Mk is the second population moment:

Mk =
1

n
· ∑

i:xi≥x(k+1)

(xi)
2 +

n−Nk

n
· E2 +

1

n
· ∑

j:xj≤x(k)

(xj)
2,

i.e., Vk = M ′
k −

Nk

n
· E2, where

M ′
k

def
=

1

n
·

 ∑

i:xi≥x(k+1)

(xi)
2 +

∑

j:xj≤x(k)

(xj)
2


 .

Thus, we compute the initial values of Sk, Nk, and M ′
k, i.e., S0, N0, and M ′

0. This step

takes linear time, i.e., O(n) steps.

For each k, the values Sk, Nk, and M ′
k differ from the previous value by only one or two

terms – namely, e.g., the values i for which xi ≥ x(k) but xi < x(k+1). In other words, the

only change is for i for which x(k) ≤ xi < x(k+1). Since x(k) is the ordering of all lower and

upper bounds, this means that x(k) = xi.

Similarly, the only change in the second sum is the term for which xj = x(k).

So, each of these values Sk, . . . , can be computed from the previous values Sk−1, . . . in a

constant number of steps. Thus, the overall number of steps for computing them is linear

in n. Accordingly, computing all possible Ek and Vk only takes O(n) steps.

Thus, after this improvement, we can compute V in

O(n · log(n)) (sorting) + O(n) (computing all possible Ek and Vk) +

O(n) (finding the smallest Vk) = O(n · log(n)) steps.
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Comment. If two interval bounds happen to coincide, then for the corresponding k, we

may have a difference of several terms between Sk and Sk−1. However, each of the 2n

bounds can occur only once in this change, so the overall number of terms is still O(n).

4.1.2 New Results

In brief, the lower bound V can be always computed in linear time, i.e., in O(n) steps.

Linear-time algorithm for computing V . The proposed algorithm is iterative. At

each iteration of this algorithm, we have three sets:

• the set I− of all the endpoints xi and xj for which we already know that for the

optimal vector x, we have, correspondingly, xi 6= xi (for xi) or xj = xj (for xj);

• the set I+ of all the endpoints xi and xj for which we already know that for the

optimal vector x, we have, correspondingly, xi = xi (for xi) or xj 6= xj (for xj);

• the set I of the endpoints xi and xj for which we have not yet decided whether these

endpoints appear in the optimal vector x.

In the beginning, I− = I+ = ∅ and I is the set of all 2n endpoints. At each iteration, we

also update the values N− = #(I−) (where #(S) denotes the number of elements in a set

S), N+ = #(I+), S− =
∑

xj∈I−
xj, and S+ =

∑
xi∈I+

xi. Initially, N− = N+ = S− = S+ = 0.

At each iteration, we do the following:

• first, we compute the median m of the set I;

• then, by analyzing the elements of the undecided set I one by one, we divide them

into two subsets

P− = {x ∈ I : x ≤ m}; P+ = {x ∈ I : x > m};

we also compute m+ = min{x : x ∈ P+};
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• we compute e− = S− +
∑

xj∈P−
xj, e+ = S+ +

∑
xi∈P+

xi,

n− = N− + #{xj ∈ P−}, n+ = N+ + #{xi ∈ P+},

and E =
e− + e+

n− + n+
;

• if E < m, then we replace I− with I− ∪ P−, S− with e−, I with P+, and N− with

n−;

• if E > m+, then we replace I+ with I+ ∪ P+, S+ with e+, I with P−, and N+ with

n+;

• if m ≤ E ≤ m+, then we replace I− with I− ∪ P−, I+ with I+ ∪ P+, I with ∅, S−

with e−, S+ with e+, N− with n−, and N+ with n+.

At each iteration, the set of undecided indices is divided in half. Iterations continue until

all indices are decided, after which we return, as V , the value of the population variance

for the vector x for which:

• xj = xj for indices j for which xj ∈ I−,

• xi = xi for indices i for which xi ∈ I+, and

• xi = E for all other indices i.

Proof that the new algorithm for computing V takes linear time. At each it-

eration, computing median takes linear time, and all other operations with I take time t

linear in the number of elements |I| of I. We start with the set I of size n; on the next

iteration, we have a set of size n/2, then n/4, etc. Thus, the overall computation time is

≤ C · (n + n/2 + n/4 + . . .) ≤ C · 2n, i.e., linear in n.

Proof that the new algorithm always computes V . In the description of quadratic

time algorithm and O(n · log(n)) time algorithm, we already showed that if we sort all 2n
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endpoints into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n), then for some k = kmin, the minimum

V is attained for the vector x for which:

• for all indices j for which xj ≤ x(k), we have xj = xj;

• for all indices i for which xi ≥ x(k+1), we have xi = xi;

• for all other indices, we have xi = Ek
def
=

Sk

Nk

, where

Sk =
∑

j:xj≤x(k)

xj +
∑

i:xi≥x(k+1)

xi;

Nk = #{j : xj ≤ x(k)}+ #{i : xi ≥ x(k+1)}.

It has also been shown that for the optimal k, we have Ek ∈ [x(k), x(k+1)].

The details of the proofs can also be found in [63].

In general, the condition x(k) ≤ Ek =
Sk

Nk

is equivalent to

Nk · x(k) ≤ Sk =
∑

j:xj≤x(k)

xj +
∑

i:xi≥x(k+1)

xi.

Subtracting x(k) from each of Nk terms in the right-hand side (RHS), and moving the sum

of the resulting non-positive differences into the left-hand side (LHS), we conclude that

∑

j:xj≤x(k)

(x(k) − xj) ≤
∑

i:xi≥x(k+1)

(xi − x(k)). (4.1.1)

When we increase k, we get, in general, more terms in the LHS and fewer in the RHS, so

LHS (non-strictly) increases, while the RHS non-strictly decreases. So, if the inequality

(4.1.1) holds for some k, it holds for all smaller values of k as well. Thus, this inequality

holds for all k until a certain value k0.

Similarly, the condition x(k+1) ≥ Ek =
Sk

Nk

is equivalent to

Nk · Ek+1 ≥
∑

j:xj≤x(k)

xj +
∑

i:xi≥x(k+1)

xi.
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Subtracting x(k+1) from each of Nk terms in RHS, and moving the sum of the resulting

non-positive differences into LHS, we conclude that

∑

j:xj≤x(k)

(x(k+1) − xj) ≥
∑

i:xi≥x(k+1)

(xi − x(k+1)). (4.1.2)

When we increase k, the LHS (non-strictly) increases, while the RHS non-strictly decreases.

So, if the inequality (4.1.2) holds for some k, it holds for all larger values of k as well. Thus,

this inequality holds for all k after a certain value l0.

So, both conditions (4.1.1) and (4.1.2) are satisfied (which is equivalent to the condition

Ek ∈ [x(k), x(k+1)]) either for a single value kmin, or for several sequential values l0, l0 +

1, . . . , k0. Let us show that if this condition is satisfied for several sequential values, this

simply means that the same minimum V is attained for all these values. For that, it is

sufficient to show that if both conditions (4.1.1) and (4.1.2) holds for k and for k + 1, then

the variance V has the same value for both k and k + 1. Indeed, since (4.1.1) is true for

k + 1, we have
∑

j:xj≤x(k+1)

(x(k+1) − xj) ≤
∑

i:xi≥x(k+2)

(xi − x(k+1)).

The LHS of this new inequality is smaller than or equal to the LHS of the inequality (4.1.2),

and its RHS is larger than or equal to the RHS of the inequality (4.1.2). Thus, the only

way for both inequalities to hold is when both sides are equal, i.e., when replacing x(k)

with x(k+1) and replacing x(k+1) with x(k+2) does not change which endpoints are in I− and

which are in I+ – and thus, does not change the corresponding value of the variance.

So:

• for k < kmin, we have Ek > x(k+1),

• for k > kmin, we have Ek < x(k), and

• for k = kmin (or, to be more precise, for l0 ≤ k ≤ k0), we have x(k) ≤ Ek ≤ x(k+1).

Hence:

• if Ek < x(k), then we cannot have k < kmin and k = kmin, hence k > kmin;
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• if Ek > x(k+1), then we cannot have k > kmin and k = kmin, hence k < kmin;

• if x(k) ≤ Ek ≤ x(k+1), then we cannot have k < kmin and k > kmin, hence k = kmin.

Thus, the above algorithm finds the correct value of kmin and thence, the correct value of

V .

4.2 Upper Bound for Variance: General Case

Known result. We have already mentioned that computing V is, in general, an NP-hard

problem.

How to compute the upper bound in the general case: known result. It is

known that the maximum of a quadratic function on an interval is always attained at

one of the endpoints. Thus, in principle, we can always compute the upper bound V in

time O(2n): namely, it is sufficient to compute the variance V for all 2n possible vectors

x = (xε1
1 , . . . , xεn

n ), where εi ∈ {−, +}, x−i = xi and x+
i = xi; the largest of these 2n values

is the desired value V .

A new NP-hardness result. In the original proof of NP-hardness as described in [110],

we have x̃1 = . . . = x̃n = 0, i.e., all midpoints are the same, only accuracies ∆i are different.

What if all the midpoints x̃i are different? We can show that in this case, computing V is

still an NP-hard problem: namely, for every n-tuple of real numbers x̃1, . . . , x̃n, the problem

of computing V for intervals xi = [x̃i −∆i, x̃i + ∆i] is still NP-hard.

To prove this result, it is sufficient to consider ∆i = N ·∆(0)
i , where ∆

(0)
i are the values

used in the original proof and N is a large integer (that will be selected later). In this case,

we can describe ∆xi = x̃i − xi as N · ∆x
(0)
i , where ∆

(0)
i ∈ [−∆

(0)
i , ∆

(0)
i ]. For large N , the

difference between the variance corresponding to the values xi = x̃i + N · ∆x
(0)
i and N2

times the variance of the values ∆x
(0)
i is bounded by a term proportional to N (and the

coefficient at N can be easily bounded). Thus, the difference between V and N2 · V (0)
is
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bounded by C ·N for some known constant C. Hence, by computing V for sufficiently large

N , we can compute V
(0)

with a given accuracy ε > 0, and we already know that computing

V
(0)

with given accuracy is NP-hard. This reduction proves that our new problem is also

NP-hard.

4.3 Upper Bound for Variance: Cases of Narrow In-

tervals and Slightly Wider Intervals

4.3.1 Known Results

Ideas behind the known results. For V , we can provide an analysis of the derivatives

which is similar to the analysis provided for V . For V , to this analysis, we can add the fact

that the second derivative of V is ≥ 0, so there cannot be a maximum inside the interval

[xi, xi].

So, when xi ≤ E, we take xi = xi; when E ≤ xi, we take xi = xi; otherwise, we must

consider both possibilities xi = xi and xi = xi.

When intervals do not intersect, we thus end up with an O(n2) time algorithm for

computing V . It turns out that an O(n2) time algorithm is possible not only when the

original intervals [x̃i−∆i, x̃i+∆i] do not intersect, but also in a more general case when the

“narrowed” intervals [x−i , x+
i ], where x− def

= x̃i−∆i/n and x+
i

def
= x̃i +∆i/n do not intersect,

and even in the more general case when for some integer K < n, no sub-collection of greater

than K narrowed intervals [x−i , x+
i ] has a common intersection. [64].

The quadratic time algorithm for computing V in cases of narrow intervals and

slightly wider intervals. This algorithm is as follows:

• First, we sort all 2n endpoints of the narrowed intervals x̃i − ∆i/n and x̃i + ∆i/n

into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n). This enables us to divide the real line into
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2n + 2 segments (“small intervals”) [x(k), x(k+1)], where we denoted x(0)
def
= −∞ and

x(2n+1)
def
= +∞.

• Second, we compute E and E and pick all “small intervals” [x(k), x(k+1)] that intersect

with [E,E].

• For each of picked small interval [x(k), x(k+1)], for each i from 1 to n, we pick the

following value of xi:

• if x(k+1) < x̃i −∆i/n, then we pick xi = xi;

• if x(k) > x̃i + ∆i/n, then we pick xi = xi;

• for all other i, we consider both possible values xi = xi and xi = xi.

As a result, for each picked small interval, we get one or several sequences x =

(x1, . . . , xn) (several if for some i, we consider both options xi = xi and xi = xi).

For each of these sequences, we check whether the average E of the selected values

x1, . . . , xn is indeed within this small interval, and if it is, compute their variance.

• Finally, we return the largest of the computed variances as V .

Proof of the above-described algorithm. Let us show the proof that the above-

described algorithm computes V in quadratic time for all the cases when for some integer

K < n, no sub-collection of greater than K narrowed intervals of xi has a common inter-

section.

We will divide this proof (and all the following proofs) into parts; consecutive parts

will be marked by 1◦, 2◦, etc. Some parts will be subdivided into subparts; in this case,

subparts of a part 3◦ will be marked as 3.1◦., 3.2◦, etc.

1◦. Let x1, . . . , xn be the values at which the variance attain its maximum on the box

x1× . . .×xn. If we fix the values of all the variables but one xi, then V becomes a quadratic
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function of xi. When the function V attains maximum over x1 ∈ x1, . . . , xn ∈ xn, then this

quadratic function of one variable will attain its maximum on the interval xi at the point

xi.

It can be shown that this quadratic function has a (global) minimum at xi = E ′
i, where

E ′
i is the average of all the values x1, . . . , xn except for xi. Since this quadratic function

of one variable is always non-negative, it cannot have a global maximum. Therefore, its

maximum on the interval xi = [xi, xi] is attained at one of the endpoints of this interval.

An arbitrary quadratic function of one variable is symmetric with respect to the location

of its global minimum, so its maximum on any interval is attained at the point which is

the farthest from the minimum. There is exactly one point which is equally close to both

endpoints of the interval xi: its midpoint x̃i. Depending on whether the global minimum

is to the left, to the right, or exactly at the midpoint, we get the following three possible

cases:

1. If the global minimum E ′
i is to the left of the midpoint x̃i, i.e., if E ′

i < x̃i, then the

upper endpoint is the farthest from E ′
i. In this case, the maximum of the quadratic

function is attained at its upper endpoint, i.e., xi = xi.

2. Similarly, if the global minimum E ′
i is to the right of the midpoint x̃i, i.e., if E ′

i > x̃i,

then the lower endpoint is the farthest from E ′
i. In this case, the maximum of the

quadratic function is attained at its lower endpoint, i.e., xi = xi.

3. If E ′
i = x̃i, then the maximum of V is attained at both endpoints of the interval

xi = [xi, xi].

2◦. In the third case, we have either xi = xi or xi = xi. Depending on whether xi is equal

to the lower or to the upper endpoints, we can “combine” the corresponding situations

with Cases 1 and 2. As a result, we arrive at the conclusion that one of the following two

situations happen:

1. either E ′
i ≤ x̃i and xi = xi;
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2. either E ′
i ≥ x̃i and xi = xi.

3◦. Let us reformulate these conclusions in terms of the average Emax of the maximizing

values x1, . . . , xn.

The average E ′
i can be described as

1

n− 1
·∑

j 6=i

xj,

via means the sum over all j 6= i. By definition,
∑
j 6=i

xj =
n∑

j=1
xj−xi, where

n∑
j=1

xj is the sum

over all possible j. By definition of Emax, we have

Emax =

n∑
j=1

xj

n
,

hence
n∑

j=1
xj = n · Emax. Therefore,

E ′
i =

n · Emax − xi

n− 1
.

Let us apply this formula to the above three cases.

3.1◦. In the first case, we have x̃i ≥ E ′
i. So, in terms of Emax, we get the inequality

x̃i ≥ n · Emax − xi

n− 1
.

Multiplying both sides of this inequality by n − 1, and using the fact that in this case,

xi = xi = x̃i + ∆i, we conclude that

(n− 1) · x̃i ≥ n · Emax − x̃i −∆i.

Moving all the terms but n · Emax to the left-hand side and dividing by n, we get the

following inequality:

Emax ≤ x̃i +
∆i

n
.
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3.2◦. In the second case, we have x̃i ≤ E ′
i. So, in terms of Emax, we get the inequality

x̃i ≤ n · Emax − xi

n− 1
.

Multiplying both sides of this inequality by n − 1, and using the fact that in this case,

xi = xi = x̃i −∆i, we conclude that

(n− 1) · x̃i ≤ n · Emax − x̃i + ∆i.

Moving all the terms but n · Emax to the left-hand side and dividing by n, we get the

following inequality:

Emax ≥ x̃i − ∆i

n
.

4◦. Parts 3.1 and 3.2 of this proof can be summarized as follows:

• In Case 1, we have Emax ≤ x̃i + ∆i/n and xi = xi.

• In Case 2, we have Emax ≥ x̃i −∆i/n and xi = xi.

Therefore:

• If Emax < x̃i−∆i/n, this means that we cannot be in Case 2. So we must be in Case

1 and therefore, we must have xi = xi.

• If Emax > x̃i +∆i/n, this means that we cannot be in Case 1. So, we must be in Case

2 and therefore, we must have xi = xi.

The only case when we do not know which endpoint for xi we should choose is the case

when Emax belongs to the narrowed interval [x̃i −∆/n, x̃i + ∆i/n].

5◦. Hence, once we know where Emax is with respect to the endpoints of all narrowed

intervals, we can determine the values of all optimal xi – except for those that are within

this narrowed interval. Since we consider the case when no more than K narrowed intervals
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can have a common point, we have no more than K undecided values xi. Trying all possible

combinations of lower and upper endpoints for these ≤ K values takes ≤ 2K steps.

Thus, the overall number of steps is O(2K · n2). Since K is a constant, the overall

number of steps is thus O(n2).

Comment. This computation time is quadratic in n, but it grows exponentially with K.

So, when K grows, this algorithm takes more and more computation time; as we will see

from the proof, it takes O(2K · n2) steps. In the worst case, when our conditions are not

satisfied and K = O(n) narrowed intervals have a common point, this algorithm takes

O(2n · n2) computational steps.

4.3.2 New Results

The O(n·log(n)) time algorithm for computing V in cases of narrow intervals and

slightly wider intervals. We improve the above-described quadratic time algorithm and

reduce the time complexity to O(n · log(n)). The new algorithm also works in the above-

described case when for some integer K < n, no sub-collection of greater than K narrowed

intervals [x̃i −∆i/n, x̃i + ∆i/n] has a common intersection. Cases of narrow intervals and

slightly wider intervals are subcases of this case. This O(n · log(n)) time algorithm is as

follows:

1◦. Let us first sort the lower endpoints x̃i−∆i/n of the narrowed intervals into an increasing

sequence. Without losing generality, we can therefore assume that these lower endpoints

are ordered in increasing order:

x̃1 −∆1/n ≤ x̃2 −∆2/n ≤ . . .

Sorting takes time O(n · log(n)); see, e.g., [42].

2◦. Then, similar to the previously quadratic algorithm, we sort all the endpoints of the

narrowed intervals into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(k) ≤ . . . ≤ x(2n). Sorting means
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that for every i, we know which element k−(i) represents the lower endpoint of the i-

th narrowed interval and which element k+(i) represents the upper endpoint of the i-th

narrowed interval.

This sorting also takes O(n · log(n)) steps.

3◦. On the third stage, we produce, for each of the resulting zones [x(k), x(k+1)], the set Ck

of all the indices i for which the i-th narrowed interval

[x̃i −∆i/n, x̃i + ∆i/n]

contains this zone.

As we have mentioned, for each i, we know the value k = k−(i) for which x̃i −
∆i/n = x(k). So, for each i, we place i into the set Ck−(i) corresponding to the zone

[x(k−(i)), x(k−(i)+1)], into the set corresponding to the next zone, etc., until we reach the

zone for which the upper endpoint is exactly x̃i + ∆i/n.

Here, we need one computational step for each new entry of i into the set corresponding

to a new zone. Therefore, filling in all these sets takes as many steps as there are items

in all these sets. For each of 2n + 1 zones, as we have mentioned, there are no more than

K items in the corresponding set; therefore, overall, all the sets contain no more than

K · (2n + 1) = O(n) steps. Thus, this stage takes O(n) time.

4◦. On the fourth stage, for all integers p from 0 to n, we compute the sums

Ep
def
=

1

n
·

p∑

i=1

xi +
1

n
·

n∑

i=p+1

xi;

Mp
def
=

1

n
·

p∑

i=1

(xi)
2 +

1

n
·

n∑

i=p+1

(xi)
2.

We compute these values sequentially. Once we know Ep and Mp, we can compute Ep+1

and Mp+1 as Ep+1 = Ep + xp+1 − xp+1 and Mp+1 = Mp + (xp+1)
2 − (xp+1)

2.

Transition from Ep and Mp to Ep+1 and Mp+1 takes a constant number of computational

steps; so overall, we need O(n) steps to compute all the values Ep and Mp.
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5◦. Finally, for each zone k, we compute the corresponding values of the variance. For

that, we first find the smallest index i for which x(k+1) ≤ x̃i −∆i/n. We will denote this

value i by p(k).

Since the values x̃i − ∆i/n are sorted, we can find this i by using bisection [42]. It is

known that bisection takes O(log(n)) steps, so finding such p(k) for all 2n + 1 zones takes

O(n · log(n)) steps.

Once i ≥ p(k), then x̃i −∆i/n ≥ x̃p(k) −∆p(k)/n ≥ x(k+1). So, in accordance with the

above justification for the quadratic-time algorithm, we should select xi = xi, as in the

sums Ep(k) and Mp(k).

In accordance with the same justification, the only values i < p(k) for which we may

also select xi = xi are the values for which the i-th narrowed intervals contains this zone.

These values are listed in the set Ck of no more than K such intervals. So, to find all

possible values of V , we can do the following.

We then consider all subsets s ⊆ Ck of the set Ck; there are no more than 2K such

subsets. For each subset s, we replace, in Ep(k) and Mp(k), values xi and (xi)
2 corresponding

to all i ∈ s, with, correspondingly, xi and (xi)
2.

Each replacement means subtracting no more than K terms and then adding no more

than K terms, so each computation takes no more than 2K steps. Once we have E and V

corresponding to the subset s, we can check whether E belongs to the analyzed zone and,

if yes, compute V = M − E2.

For each subset, we need no more than 2K + 2 computations, so for all no more than

2K subsets, we need no more than (2K + 2) · 2K computations. For a fixed K, this value

does not depend on n; in other words, for each zone, we need O(1) steps.

To perform this computation for all 2n+1 zones, we need (2n+1) ·O(1) = O(n) steps.

6◦. Finally, we find the largest of the resulting values V – this will be the desired value V .

Finding the largest of O(n) values takes O(n) steps.
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Overall, we need

O(n · log(n)) + O(n · log(n)) + O(n) + O(n) + O(n · log(n)) + O(n) = O(n · log(n))

steps. Thus, we have proven that our algorithm computes V in O(n · log(n)) steps.

4.4 Upper Bound for Variance: New Case of Subset

Property for Narrowed Intervals

Description of the new case. In the previous text, we described an O(n · log(n)) time

algorithm for computing V for the case of narrow intervals. In the following text, we will

show that there exists a linear time algorithm for computing V in case of narrow intervals.

This new algorithm also works in a more general case when no narrowed interval [x̃i −
∆i/n, x̃i + ∆i/n] is a proper subinterval of the interior of another narrowed interval, i.e.,

when |x̃i − x̃j| ≥ |∆i −∆j|
n

for all i 6= j.

Definition 2 We say that a collection of intervals satisfies a subset property for narrowed

intervals if no “narrowed interval” [x−i , x+
i ], where x− def

= x̃i −∆i/n and x+
i

def
= x̃i + ∆i/n,

is a proper subinterval of the interior of another narrowed interval, i.e., when |x̃i − x̃j| ≥
|∆i −∆j|

n
for all i 6= j.

This case includes the cases of narrow intervals and of a single measuring instrument

as particular cases.

Comment. This class if new, so there are no known results for computing V for this class.

New result: a linear time algorithm for computing V in case of subset property

for narrowed intervals. The most time-consuming step in the O(n · log(n)) time algo-

rithm described in Section 4.3 is sorting, which alone takes O(n · log(n)) time. To further

reduce the time complexity, we need discard the use of sorting.
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The main idea is using a linear-time algorithm for computing the median instead of an

O(n · log(n)) time algorithm for sorting the list.

The proposed algorithm is iterative. At each iteration of this algorithm, we have three

sets:

• the set I− of all the indices i from 1 to n for which we already know that for the

optimal vector x, we have xi = xi;

• the set I+ of all the indices j for which we already know that for the optimal vector

x, we have xj = xj;

• the set I = {1, . . . , n} − I− − I+ of the indices i for which we are still undecided.

In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration, we also update the

values of two auxiliary quantities S− def
=

∑
i∈I−

xi and S+ def
=

∑
j∈I+

xj. In principle, we could

compute these values by computing these sums, but to speed up computations, on each

iteration, we update these two auxiliary values in a way that is faster than re-computing

the corresponding two sums. Initially, since I− = I+ = ∅, we take S− = S+ = 0.

At each iteration, we do the following:

• first, we compute the median m of the set I (median in terms of sorting by x̃i);

• then, by analyzing the elements of the undecided set I one by one, we divide them

into two subsets P− = {i : x̃i ≤ x̃m} and P+ = {j : x̃j > x̃m};

• we compute e− = S− +
∑

i∈P−
xi and e+ = S+ +

∑
j∈P+

xj;

• if n · x−m < e− + e+, then we replace I− with I− ∪ P−, S− with e−, and I with P+;

• if n · x−m > e− + e+, then we replace I+ with I+ ∪ P+, S+ with e+, and I with P−;

• if n ·x−m = e−+ e+, then we replace I− with I−∪P−, I+ with I+∪P+, and I with ∅.

At each iteration, the set of undecided indices is divided in half. Iterations continue until

all indices are decided, after which we return, as V , the value of the population variance

for the vector x for which xi = xi for i ∈ I− and xj = xj for j ∈ I+.
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Comment. If some intervals xi are degenerate, i.e., xi = [xi, xi], then we need the following

modifications to the above algorithm:

• first, as the initial set I, we take the set of all indices corresponding to non-degenerate

intervals;

• second, we pre-compute the sum e of all the exactly known values xi (corresponding

to degenerate intervals);

• third, on each iteration, instead of comparing the product n·x−m with the sum e−+e+,

we compare the product with the sum e− + e+ + e;

• finally, when computing the population variance that will be returned in V , we must

include the degenerate values xi as well.

Let us check whether the new algorithm for computing V takes linear time. At each

iteration, computing median takes linear time, and all other operations with I take time t

linear in the number of elements |I| of I: t ≤ C · |I| for some C. We start with the set I

of size n; on the next iteration, we have a set of size n/2, then n/4, etc. Thus, the overall

computation time is ≤ C · (n + n/2 + n/4 + . . .) ≤ C · 2n, i.e., linear in n.

Proof that the new linear algorithm always computes V in case of subset prop-

erty for narrowed intervals. Similarly to [106], one can easily show that since no two

narrowed intervals are proper subsets of one another, they can be linearly ordered in lexi-

cographic order. In this order, we have x−1 ≤ x−2 ≤ . . . ≤ x−n , x+
1 ≤ x+

2 ≤ . . . ≤ x+
n , and,

thus, the averages x̃i = (x−i + x+
i )/2 are also sorted: x̃1 ≤ x̃2 ≤ . . . ≤ x̃n.

In [48], we have shown that in this sorting, the value V is attained at one of the vectors

x(k) = (x1, . . . , xk, xk+1, . . . , xn), i.e., that V = V (x(k)) for some k.

In [48], we also analyzed the change in V (x(k)) when we replace x(k) with x(k−1), i.e.,

when we replace xk with xk = xk + 2∆k; we have shown that Vk−1− Vk =
4∆k

n
· (x−k −Ek),

where Ek
def
= E(x(k)).
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Hence, Vk−1 < Vk if and only if x−k < Ek. Multiplying both sides of this inequality by

n, we get an equivalent inequality x−k < n · Ek, where n · Ek =
k∑

i=1
xi +

n∑
j=k+1

xj. Similarly,

Vk−1 > Vk if and only if x−k > Ek, and Vk−1 = Vk if and only if x−k = Ek.

When we go from k to k + 1, we replace the larger value xk+1 in the sum n · Ek by

a smaller value xk. Thus, the sequence n · Ek is strictly decreasing with k, while x−k is

(maybe non-strictly) increasing with k.So, once we have n · x−k < Ek, i.e., Vk−1 < Vk,

these inequalities will hold for smaller k as well. Similarly, once we have n · x−k > Ek, i.e.,

Vk−1 > Vk, these inequalities will hold for larger k as well.

Once we have n · x−k = Ek, i.e., Vk−1 = Vk, then we will have Vk > Vk+1 > . . . and

Vk = Vk−1 > Vk−2 > . . ., i.e., Vk = Vk−1 will be the largest value of V .

In other words, the sequence Vk first increases (Vk−1 < Vk) and then starts decreasing

(Vk−1 > Vk), with one or two top values.

For each m, if Vm−1 < Vm (i.e., if n · x−m < Em), this means that the value kmax

corresponding to the maximum of V is ≤ m; hence for all the indices ≤ m, we already

know that in the optimal vector x, xi = xi. Thus, these indices can be added to the set I−.

If Vm > Vm−1 (i.e., if n ·x−m > Em), this means that the value kmax corresponding to the

maximum of V is > m; hence for all the indices > m, we already know that in the optimal

vector x, xi = xi. Thus, these indices can be added to the set I+.

Finally, if Vm = Vm−1 (i.e., if n · x−m = Em), then this m is where maximum is attained.

The algorithm has been justified.

4.5 Upper Bound for Variance: Case of Single Mea-

suring Instrument (Case of Subset Property)

For the case of a single measuring instrument, no efficient algorithm for computing V were

previously known.
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4.5.1 First New Result

For case of subset property (= single measuring instrument), we can sort the intervals in

lexicographic order: xi ≤ xj if and only if xi < xj or (xi = xj and xi ≤ xj).

It can be proven that the maximum of V is always attained if for some k, the first k

values xi are equal to xi and the next n− k values xi are equal to xi. This result is proven

by contradiction: if in the maximizing vector x = (x1, . . . , xn), some xi is preceding some

xj, i < j, then we can increase V while keeping E intact – which is in contradiction with

the assumption that the vector x was maximizing. Specifically, to increase V , we can do

the following: if ∆i ≤ ∆j, we replace xi with xi = xi−2∆i and xj with xj +2∆i; otherwise,

we replace xj with xj = xj + 2∆j and xi with xi − 2∆j.

As a result, we arrive at the following algorithm: first, we sort the intervals [xi, xi]

in lexicographic order; then, for k = 0, 1, . . . , n, compute the value V = M − E2 for the

corresponding vectors x(k) = (x1, . . . , xk, xk+1, . . . , xn). When we go from a vector x(k) to

the vector x(k+1), only one term changes in the vector x, so only one term changes in each

of the sums E and M .

How good is this algorithm? Sorting takes O(n · log(n)) time; computing the initial

values of E and M takes linear time O(n). For each k, computing the new values of E and

M takes a constant number of steps, so overall, computing all n values of E, M (and hence

V ) takes linear time. Thus, the overall time of this algorithm is O(n · log(n)).

4.5.2 Second New Result

The case of subset property is a subcase of the case of subset property for narrowed intervals.

Therefore, the above-described new linear time algorithm for computing V in case of subset

property for narrowed intervals can also be applied to case of subset property.
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4.6 Discussion: Linear Time Algorithms vs. O(n ·
log(n)) Time Algorithms

In the previous sections, we have seen that in several cases, we have both a linear time

algorithm and a O(n · log(n)) time algorithms for computing the same bound (V or V ). A

natural question arises: how practical are the new linear time O(n) algorithms? For which

n are they better than the previously proposed O(n · log(n)) time algorithms for computing

V or V ?

The answer to this question comes from the following analysis. In general, the O(f(n))

time means that the actual computation time is ≤ C · f(n) for some constant C > 0. For

the known O(n · log(n)) time algorithms, the constants are C ≈ 1. As one can see from

the proof, for our new algorithms, the constants are the same as for known linear time

algorithm for computing the median, i.e., it is ≈ 20 [42]. Thus, the new algorithm is better

when log2(n) > 20, i.e., when n > 106.

We have mentioned that in many practical applications we do need to process millions

of data points; in such applications, the new linear algorithms for computing V or V are

indeed faster. For smaller size databases, the O(n · log(n)) time algorithms are faster.

4.7 Upper Bound for Variance: Case of Several MI

For the case of several MI, no efficient algorithm for computing V was previously known.

Let us describe the new algorithm.

In the case of several MI, we can similarly prove that if we sort the intervals corre-

sponding to each MI in lexicographic order, then the maximum of V is attained when from

intervals corresponding to each MI, the values xi corresponding to this MI form a sequence

(x1, . . . , xkj
, xkj+1, . . . , xnj

), where nj is the total number of intervals corresponding to the

j-th MI.

Thus, to find the maximum of V , we must find the values k1, . . . , km corresponding to
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m MIs. For these values, V = M−E2, where M =
∑

Mj and E =
∑

Ej, where we denoted

by Ej and Mj, the averages of, correspondingly, xi and x2
i , taken by using only results of

j-th MI.

For each MI j, we can compute all nj + 1 possible values Ej and Mj in linear time.

There are ≤ nm combinations of kis; for each combination, we need m additions to

compute E =
∑

Ej, m additions to compute M =
∑

Mj, and a constant number of

operations to compute V = M − E2. Thus, overall, we need time O(nm).

4.8 Upper Bound for Variance: Cases of Privacy and

Non-detects

These two cases are subcases of case of subset property, and in turn subcases of case of

subset property for narrowed intervals. All the known and new algorithms described in

Section 4.4 and 4.5 can be applied to these two cases.

4.9 Upper Bound for Variance: A New Algorithm Ap-

plicable to All Above-Described Cases

4.9.1 Analysis of all above-described cases

One can easily check that all the cases for which a feasible algorithm is known for computing

upper bound for variance are particular cases of one of the following three cases:

• case of subset property for narrowed intervals – when no two narrowed intervals

[x̃i − ∆i/n, x̃i + ∆i/n] are proper subsets of each other; for this case, a linear time

algorithm is possible;

• case of slightly wider narrowed intervals – when every collections of > K narrowed

intervals Xi has an empty intersection: Xi1 ∩ . . . ∩ Xic+1 = ∅; for this case, an
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O(n · log(n)) time algorithm is possible; and

• case of m > 1 measuring instruments; for this case, an O(nm) time algorithm is

possible.

Thus, to provide the most general case, we must describe a case that includes these three

situations as subcases.

4.9.2 New result

Formulation of the new result. We will consider the case described by two parameters

m ≥ 1 and K ≥ 1. In this case, we can divide the intervals xi into m subclasses such that:

• the first m−1 subclasses have the property that within each subclass, no two narrowed

intervals are proper subsets of each other;

• the last class either has the same property, or it has the property that every collections

of > K narrowed intervals from this class has an empty intersection.

Our algorithm will take time O(n · log(n)) when m = 1 and time O(nm) when m > 1.

One can easily check that all three above cases are indeed particular cases of the above

situation. Namely, the case of subset property for narrowed intervals and the case of slightly

wider narrowed intervals correspond to m = 1 – and moreover, m = 1 consists of exactly

these two cases.

Main idea behind the new algorithm. One can show that the optimization selection

ideas behind these three algorithms, in effect, do not change if, instead of considering all n

intervals, we only consider a subset of the intervals.

For example, the arguments similar to the ones presented in [48] show that if a subse-

quence of the original sequence of intervals has the property that no two narrowed subinter-

vals from this subsequence are proper intervals of one another, then for this subsequence, the

maximum value of V is attained at one of the sequences of the type (x1, . . . , xk, xk+1, . . . , xn).
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The only (minor) difference is with the third case, since for this case, we are no longer

talking about a zone that contains the mean E – just one of the zones.

Thus, we arrive at the following algorithm.

Algorithm. For m = 1, depending on the situation, we can use either the algorithm for

the recent case or the algorithm for the third case. So, to describe the algorithm, it is

sufficient to consider the case when m ≥ 2.

By definition, the set of intervals can be divided into m groups. Within each group,

we perform the appropriate sorting. Then, we know that the value V is attained when for

each of the m− 1 subgroups, we have a sequence of the type (x1, . . . , xk, xk+1, . . . , xn) for

an appropriate k = kj, and for the last group, a sequence for which:

• if xi ≤ x(k), then xi = xi;

• if x(k+1) ≤ xi, then xi = xi;

for some parameter k = km.

Similar to the third case, for each combination (k1, . . . , km−1), checking all possible

values of km takes time O(n). Thus, for all ≤ nm−1 possible combinations (k1, . . . , km−1),

we need to spend O(n) time – to the total of O(nm).

Additional statement: often, we do not need to know which interval belongs to

which subgroup. In our description of the new algorithm, we assumed that the original

set of n intervals can be divided into m subsets, and that we know which interval belongs

to which subset. It turns out that in the case when all m subsets have a no-proper-subset

(nps) property, there is no need to explicitly describe the corresponding m subsets – it is

sufficient to know that it is, in principle, possible to subdivide the original set of n intervals

into m subsets with this property.

This possibility can be, in turn, described as follows. Based on the original intervals xi,

we can form the following directed graph:
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• its vertices are the original intervals, and

• an edge xi → xj is going from the interval [xi, xi] to the interval [xj, xj] if and only

the i-th interval is a proper subset of the (interior of the) j-th one, i.e., if and only if

[xi, xi] ⊆ (xj, xj).

It is easy to see that this graph is acyclic – so each chain has at most n elements in it. By

the height h of this graph, we mean the largest length of a chain xi1 → xi2 → . . . → xih

from this graph.

The following statement describes the relation between the height of the graph and the

number of subgroups:

• if intervals can be divided into m subgroups with the no-proper-subset (nps) property,

then the height of the corresponding graph is ≤ m;

• vice versa, if the height of the corresponding graph is m, then we can (efficiently)

divide the original intervals into m subgroups with the no-proper-subset property.

Indeed, if we can divide intervals into m nps subgroups, then we cannot have a chain of

length > m: otherwise, at least two intervals from this chain will be in the same subgroups

– and since every two elements from a chain are proper subsets of each other, this would

violate the nps property.

Vice versa, if we have a graph of height m, then we can do the following:

• We take all elements which are not dominated by anyone else as the first subgroup.

It is easy to see that this group has a nps property.

• After deleting elements from the first group, we can again consider those who are not

dominated by anyone in the remaining graph – these will form the second subgroup.

• etc.
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One can check that each interval xi will be assigned to the group whose number k is the

largest length of the chain leading to xi. Since the height of the graph is m, we will thus

subdivide all n original intervals into to m subgroups with the nps property.

The statement has been proven.

4.10 Other Statistical Characteristics – Outlier De-

tection

4.10.1 Formulation of the Problem

Outlier detection is important. In many application areas, it is important to detect

outliers, i.e., unusual, abnormal values; see, e.g., [115]. In medicine, unusual values may

indicate disease; in geophysics, abnormal values may indicate a mineral deposit or an

erroneous measurement result; in structural integrity testing, abnormal values may indicate

faults in a structure, etc.

The traditional engineering approach to outlier detection (see, e.g., [175]) is as follows:

• first, we collect measurement results x1, . . . , xn corresponding to normal situations;

• then, we compute the sample average E
def
=

1

n
·

n∑

i=1

xi of these normal values and the

(sample) standard deviation σ =
√

V , where V
def
= M − E2 and M

def
=

1

n
·

n∑

i=1

x2
i ;

• finally, a new measurement result x is classified as an outlier if it is outside the interval

[L,U ] (i.e., if either x < L or x > U), where L
def
= E − k0 · σ, U

def
= E + k0 · σ, and

k0 > 1 is some pre-selected value (most frequently, k0 = 2, 3, or 6).

Outlier detection under interval uncertainty. In some practical situations, we only

have intervals xi = [xi, xi] of possible values of xi. This happens, for example, if instead of

observing the actual value xi of the random variable, we observe the value x̃i measured by

an instrument with a known upper bound ∆i on the measurement error; then, the actual
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(unknown) value is within the interval xi = [x̃i −∆i, x̃i + ∆i]. For different values xi ∈ xi,

we get different bounds L and U . Possible values of L form an interval – we will denote it

by L
def
= [L,L]; possible values of U form an interval U

def
= [U,U ]. In other words, we arrive

at the following computation problem:

GIVEN:

• an integer n ≥ 1;

• n intervals xi = [xi, xi];

• a real number k0 > 1.

COMPUTE the intervals

L
def
= {L(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn};

U
def
= {U(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn};

where:

L
def
= E − k0 · σ, U

def
= E + k0 · σ,

E
def
=

1

n
·

n∑

i=1

xi, σ
def
=
√

M − E2, and

M
def
=

1

n
·

n∑

i=1

x2
i .

How do we now detect outliers? There are two possible approaches to this question: we

can detect possible outliers and we can detect guaranteed outliers:

• a value x is a possible outlier if it is located outside one of the possible k0-sigma

intervals [L,U ] (but is may be inside some other possible interval [L,U ]);

• a value x is a guaranteed outlier if it is located outside all possible k0-sigma intervals

[L,U ].
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Which approach is more reasonable depends on a possible situation:

• if our main objective is not to miss an outlier, e.g., in structural integrity tests, when

we do not want to risk launching a spaceship with a faulty part, it is reasonable to

look for possible outliers;

• if we want to make sure that the value x is an outlier, e.g., if we are planning a

surgery and we want to make sure that there is a micro-calcification before we start

cutting the patient, then we would rather look for guaranteed outliers.

The two approaches can be described in terms of the endpoints of the intervals L and U:

• A value x is guaranteed to be normal – i.e., it is not a possible outlier – if x belongs

to the intersection of all possible intervals [L,U ], i.e., to the interval [L,U ].

• A value x is possibly normal – i.e., it is not a guaranteed outlier – if x belongs to the

union of all possible intervals [L, U ], i.e., to the interval [L, U ].

So, to detect outliers under interval uncertainty, we must compute the bounds L, U , L,

and U .

4.10.2 Known Results

Feasible algorithms for computing U and L. The algorithms for computing U and

L, as shown in [114] are as follows:

• In both algorithms, first, we sort all 2n values xi, xi into a sequence x(1) ≤ x(2) ≤
. . . ≤ x(2n); take x(0) = −∞ and x(2n+1) = +∞. Thus, the real line is divided into

2n + 1 zones (x(0), x(1)], [x(1), x(2)], . . . , [x(2n−1), x(2n)], [x(2n), x(2n+1)).

• For each of these zones [x(k), x(k+1)], k = 0, 1, . . . , 2n, we compute the values

ek
def
=

∑

i:xi≥x(k+1)

xi +
∑

j:xj≤x(k)

xj,
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mk
def
=

∑

i:xi≥x(k+1)

(xi)
2 +

∑

j:xj≤x(k)

(xj)
2,

and nk = the total number of such i’s and j’s. Then, we solve the quadratic equation

Ak −Bk · µ + Ck · µ2 = 0,

where

Ak
def
= e2

k · (1 + α2)− α2 ·mk · n; α
def
= 1/k0,

Bk
def
= 2 · ek ·

(
(1 + α2) · nk − α2 · n

)
; Ck

def
= nk ·

(
(1 + α2) · nk − α2 · n

)
.

For computing U , we select only those solutions for which µ · nk ≤ ek and µ ∈
[x(k), x(k+1)]; for computing L, we select only those solutions for which µ ·nk ≥ ek and

µ ∈ [x(k), x(k+1)]. For each selected solution, we compute the values of

Ek =
ek

n
+

n− nk

n
· µ, Mk =

mk

n
+

n− nk

n
· µ2,

Uk = Ek + k0 ·
√

Mk − (Ek)2 or Lk = Ek − k0 ·
√

Mk − (Ek)2.

• Finally, if we are computing U , we return the smallest of the values Uk; if we are

computing L, we return the smallest of the values Lk.

Justification of the above-described algorithms. We will only prove the result for

U ; for L, the proof is practically identical.

Our proof is based on the fact that the minimum of a differentiable function of xi on

an interval [xi, xi] is attained either inside this interval or at one of the endpoints. If the

minimum is attained inside, the derivative
∂U

∂xi

is equal to 0; if it is attained at xi = xi,

then
∂U

∂xi

≥ 0; finally, if it is attained at xi = xi, then
∂U

∂xi

≤ 0. For our function,

∂U

∂xi

=
1

n
+ k0 · xi − E

σ · n ;

thus,
∂U

∂xi

= 0 if and only if xi = µ
def
= E − α · σ; similarly, the non-positiveness and

non-negativeness of the derivative can be described by comparing xi with µ. Thus:

50



www.manaraa.com

• either xi ∈ (xi, xi) and xi = µ,

• or xi = xi and xi = xi ≥ µ,

• or xi = xi and xi = xi ≤ µ.

Hence, if we know how the value µ is located with respect to all the intervals [xi, xi], we

can find the optimal values of xi:

• if xi ≤ µ, then minimum cannot be attained inside or at the lower endpoint, so it is

attained when xi = xi;

• if µ ≤ xi, then, similarly, the minimum is attained when xi = xi;

• if xi < µ < xi, then the minimum is attained when xi = µ.

Hence, to find the minimum, we will analyze how the endpoints xi and xi divide the real

line, and consider all the resulting zones.

Let the corresponding zone [x(k), x(k+1)] be fixed. For the i’s for which µ 6∈ (xi, xi), the

values xi that correspond to the minimal sample variance are uniquely determined by the

above formulas.

For the i’s for which µ ∈ (xi, xi), the selected value xi should be equal to the same value

µ. To determine this µ, we will use the fact that, by definition, µ = E−α ·σ, where E and

σ are computed by using the same value of µ. This equation is equivalent to E−µ ≥ 0 and

α2 ·σ2 = (µ−E)2. Substituting the above values of xi into the formula for the mean E and

for the standard deviation σ, we get the quadratic equation for µ which is described in the

algorithm. So, for each zone, we can uniquely determine the values xi that may correspond

to a minimum of U .

For the actual minimum, the value µ is inside one of these zone, so the smallest of the

values Uk is indeed the desired minimum.

In this algorithm, sorting takes O(n · log(n)) steps (see, e.g., [42]), and the rest of the

algorithm takes linear time (O(n)) for each of 2n + 1 zones, i.e., the total quadratic time.
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In general, computing L and U is NP-hard. To be able to detect guaranteed outliers,

we must be able to compute the values L and U . In general, this is an NP-hard problem

[114].

Feasible algorithms for computing L and U for many reasonable situations.

There are algorithms for computing U and L for many reasonable situations. Namely,

there are efficient algorithms that compute U and L for the case when all the interval

midpoints (“measured values”) x̃i
def
= (xi + xi)/2 are definitely different from each other, in

the sense that the “narrowed” intervals
[
x̃i − 1 + α2

n
·∆i, x̃i +

1 + α2

n
·∆i

]

– where α = 1/k0 and ∆i
def
= (xi − xi)/2 is the interval’s half-width – do not intersect with

each other [114].

The algorithms are as follows:

• In both algorithms, first, we sort all 2n endpoints of the narrowed intervals x̃i −
1 + α2

n ·∆i and x̃i +
1 + α2

n ·∆i into a sequence x(1) ≤ x(2) ≤ . . . ≤ x(2n). This enables

us to divide the real line into 2n + 1 zones [x(i), x(i+1)], where we denoted x(0)
def
= −∞

and x(2n+1)
def
= +∞.

• For each of zones [x(i), x(i+1)], we do the following: for each j from 1 to n, we pick

the following value of xj:

• if x(i+1) < x̃j − 1 + α2

n ·∆j, then we pick xj = xj;

• if x(i+1) > x̃j + 1 + α2

n ·∆j, then we pick xj = xj;

• for all other j, we consider both possible values xj = xj and xj = xj.

As a result, we get one or several sequences of xj for each zone.

• To compute U , for each of the sequences xj, we check whether, for the selected values

x1, . . . , xn, the value of E − α · σ is indeed within the corresponding zone, and if it
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is, compute the value U = E + k0 · σ. Finally, we return the largest of the computed

values U as U .

• To compute L, for each of the sequences xj, we check whether, for the selected values

x1, . . . , xn, the value of E + α · σ is indeed within the corresponding zone, and if it is,

compute the value L = E − k0 · σ. Finally, we return the smallest of the computed

values L as L.

Justification of the above-described algorithms. The algorithm of computing U

can be proven to be correct: Since 1 + (1/k0)
2 < n, we can conclude that the maximum of

the function U is attained when for every i, either xi = xi or xi = xi. For each i, we will

consider both these cases.

If the maximum is attained for xi = xi, this means, in particular, that if we keep

all the other values xj the same (x′j = xj) but replace xi by x′i = xi = xi − 2 · ∆i,

then the value U will decrease. We will denote the values of E, U , etc., that correspond

to (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn), by E ′, U ′, etc. In these terms, the desired inequality

takes the form U ≥ U ′, where U = E + k0 · σ and U ′ = E ′ + k0 · σ′. We can represent

this inequality as k0 · σ ≥ (E ′ − E) + k0 · σ′, hence either (E ′ − E) + k0 · σ′ ≤ 0, or

k2
0 · σ2 ≥ (E ′ −E)2 + k2

0 · (σ′)2 + 2(E −E ′) · k0 · σ′. In the second case, we move the terms

linear in σ′ to one side of the inequality and square both sides again. As a result, we get an

inequality that only contains variances V = σ2 = M − E2 (where M is the sample second

moment) and V ′ = (σ′)2 = M ′ − (E ′)2 and no longer contains square roots.

For our choice of x′i, we have E ′ = E − (2 ·∆i)/n and

M ′ = M − 4 ·∆i · xi

n
+

4 ·∆2
i

n
.

Substituting these expressions into the above-described inequality and simplifying the re-

sulting algebraic expression, we conclude that

x̃i + ∆i · 1 + α2

n
≥ E − α · σ.
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Similarly, if the maximum is attained for xi = xi, this means, in particular, that if we keep

all the other values xj the same but replace xi by x′i = xi = xi + 2 ·∆i, then the value U

will decrease. This property leads to the inequality

x̃i −∆i · 1 + α2

n
≤ E − α · σ.

So:

• if xi = xi, then E − α · σ ≤ x̃i + ∆i · 1 + α2

n ;

• if xi = xi, then E − α · σ ≥ x̃i −∆i · 1 + α2

n .

Therefore, if we know the value of E − α · σ, then:

• if x̃i + ∆i · 1 + α2

n < E − α · σ, then we cannot have xi = xi hence xi = xi;

• similarly, if x̃i −∆i · 1 + α2

n > E − α · σ, then we cannot have xi = xi hence xi = xi.

The only case when we do not know what value to choose is the case when

x̃i −∆i · 1 + α2

n
≤ E − α · σ ≤ x̃i + ∆i · 1 + α2

n
,

i.e., when the value E −α · σ belongs to the i-th narrowed interval; in this case, we can, in

principle, have both xi = xi and xi = xi. Thus, the algorithm is indeed correct.

This algorithm of computing U can be proven to take quadratic time. Indeed, once we

know where E is with respect to the endpoints of all narrowed intervals, we can determine

the values of all optimal xi – except for those that are within this narrowed interval.

Since we consider the case when no narrowed intervals can have a common point, we

have no more than 1 undecided values xi. For each zone and for each of these combinations,

we need a linear time (O(n)) to compute U . There are O(n) zones, so the overall number

of steps is O(n2).

For computing L, the proof is, in effect, the same.

Comment. These algorithms also work when, for some fixed K, no more than K “narrowed”

intervals

[
x̃i −∆i · 1 + α2

n
, x̃i + ∆i · 1 + α2

n

]
can have a common point [114].
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4.10.3 New Results

We use extend known efficient algorithms for computing U and L from the case of narrow in-

tervals to a more general case when no two narrowed intervals

[
x̃i −∆i · 1 + α2

n
, x̃i + ∆i · 1 + α2

n

]

are proper subsets of one another. This is a more general case because if they do not inter-

sect, them, of course, they cannot be proper subsets of one another – in the sense that one

of them is a subset of the interior of the second one. This new case is also a more general

case than the case of single measuring instrument.

The new algorithm for computing U and L. Let us first describe the algorithm itself;

in the next section, we provide the justification for this algorithm.

• First, we sort of the values x̃i into an increasing sequence. Without losing generality,

we can assume that

x̃1 ≤ x̃2 ≤ . . . ≤ x̃n.

• Then, for every k from 0 to n, we compute the value V (k) = M (k) − (E(k))2 of the

population variance V for the vector x(k) = (x1, . . . , xk, xk+1, . . . , xn), and we compute

U (k) = E(k) + k0 ·
√

V (k).

• Finally, we compute U as the largest of n + 1 values U (0), . . . , U (n).

To compute the values V (k), first, we explicitly compute M (0), E(0), and V (0) = M (0) −
(E(0))2. Once we know the values M (k) and E(k), we can compute

M (k+1) = M (k) +
1

n
· (xk+1)

2 − 1

n
· (xk+1)

2

and E(k+1) = E(k) +
1

n
· xk+1 −

1

n
· xk+1.

Proof of the bound on the number of computation steps. It is well known that

sorting takes O(n · log(n)) steps; see, e.g., [42]. Computing the initial values M (0), E(0),

and V (0) takes linear time O(n). For each k from 0 to n− 1, we need a constant number of
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steps to compute the next values M (k+1), E(k+1), and V (k+1). Computing U (k+1) also takes

a constant number of steps. Finally, finding the largest of n+1 values U (k) also takes O(n)

steps. Thus, overall, we need

O(n · log(n)) + O(n) + O(n) + O(n) = O(n · log(n)) steps.

It is worth mentioning that if the measurement results x̃i are already sorted, then we

only need linear time to compute U .

Proof of the algorithm correctness. We have already mentioned that the maximum

U of the function U is attained at a vector x = (x1, . . . , xn) in which each value xi is equal

either to xi or to xi.

To justify our algorithm, we need to prove that this maximum is attained at one of the

vectors x(k) in which all the lower bounds xi precede all the upper bounds xi. We will prove

this by reduction to a contradiction. Indeed, let us assume that the maximum is attained

at a vector x in which one of the lower bounds follows one of the upper bounds. In each

such vector, let i be the largest upper bound index followed by the lower bound; then, in

the optimal vector x, we have xi = xi and xi+1 = xi+1.

Since the maximum is attained for xi = xi, replacing it with xi = xi − 2 ·∆i will either

decrease the value of U or keep it unchanged. Let us describe how U changes under this

replacement. Since U is defined in terms of E, M , and V , let us first describe how E, M ,

and V change under this replacement. In the sum for M , we replace (xi)
2 with

(xi)
2 = (xi − 2 ·∆i)

2 = (xi)
2 − 4 ·∆i · xi + 4 ·∆2

i .

Thus, the value M changes into M + ∆Mi, where

∆Mi = − 4

n
·∆i · xi +

4

n
·∆2

i . (4.10.1)

The population mean E changes into E + ∆Ei, where

∆Ei = −2 ·∆i

n
. (4.10.2)
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Thus, the value E2 changes into (E + ∆Ei)
2 = E2 + ∆(E2)i, where

∆(E2)i = 2 · E ·∆Ei + ∆E2
i = − 4

n
· E ·∆i +

4

n2
·∆2

i . (4.10.3)

So, the variance V changes into V + ∆Vi, where

∆Vi = ∆Mi −∆(E2)i =

− 4

n
·∆i · xi +

4

n
·∆2

i +
4

n
· E ·∆i − 4

n2
·∆2

i =

4

n
·∆i ·

(
−xi + ∆i + E − ∆i

n

)
.

By definition, xi = x̃i + ∆i, hence −xi + ∆i = −x̃i. Thus, we conclude that

∆Vi =
4

n
·∆i ·

(
−x̃i + E − ∆i

n

)
. (4.10.4)

The function U = E +k0 ·σ attains its maximum if and only if the function u
def
= α ·U =

α · E + σ attains its maximum. After the change, the value u changes into

u + ∆ui = α · (E + ∆Ei) +
√

V + ∆Vi,

so the condition u + ∆ui ≤ u leads to

α · (E + ∆Ei) +
√

V + ∆Vi ≤ α · E + σ.

By moving the term proportional to α to the right-hand side, we conclude that
√

V + ∆Vi ≤
σ − α · ∆Ei. In the new inequality, the left-hand side is the new value of the standard

deviation, so it is a non-negative number, hence the right-hand side is also non-negative,

so we can square both sides of the inequality and conclude that

V + ∆Vi ≤ σ2 − 2 · α · σ ·∆Ei + α2 · (∆Ei)
2.

Moving all the terms to the left-hand side and using the fact that V = σ2, we conclude

that

zi
def
= ∆Vi + 2 · α · σ ·∆Ei − α2 · (∆Ei)

2 ≤ 0. (4.10.5)
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Substituting the known values of ∆Vi and ∆Ei, we get:

zi =
4

n
·∆i · ei, (4.10.6a)

where

ei = −x̃i + E − ∆i

n
− α · σ − α2 · ∆i

n
,

i.e.,

ei = (E − α · σ)−
(
x̃i +

1 + α2

n
·∆i

)
. (4.10.6b)

Thus, from zi ≤ 0, we conclude that

E − α · σ ≤ x̃i +
1 + α2

n
·∆i. (4.10.7)

Similarly, since the maximum of u is attained for xi+1 = xi+1, replacing it with xi+1 =

xi+1 +2 ·∆i+1 will either decrease the value of u or keep it unchanged. Let us describe how

variance changes under this replacement. In the sum for M , we replace (xi+1)
2 with

(xi+1)
2 = (xi+1 + 2 ·∆i+1)

2 = (xi+1)
2 + 4 ·∆i+1 · xi+1 + 4 ·∆2

i+1.

Thus, the value M changes into M + ∆Mi+1, where

∆Mi+1 =
4

n
·∆i+1 · xi+1 +

4

n
·∆2

i+1. (4.10.8)

The population mean E changes into E + ∆Ei+1, where

∆Ei+1 =
2 ·∆i+1

n
. (4.10.9)

Thus, the value E2 changes into

(E + ∆Ei+1)
2 = E2 + ∆(E2)i+1,

where

∆(E2)i+1 = 2 · E ·∆Ei+1 + ∆E2
i+1 =

4

n
· E ·∆i+1 +

4

n2
·∆2

i+1. (4.10.10)
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So, the variance V changes into V + ∆Vi+1, where

∆Vi+1 = ∆Mi+1 −∆(E2)i+1 =

4

n
·∆i+1 · xi+1 +

4

n
·∆2

i+1 −
4

n
· E ·∆i+1 − 4

n2
·∆2

i+1 =

4

n
·∆i+1 ·

(
xi+1 + ∆i+1 − E − ∆i+1

n

)
.

By definition, xi+1 = x̃i+1 −∆i+1, hence xi+1 + ∆i+1 = x̃i+1. Thus, we conclude that

∆Vi+1 =
4

n
·∆i+1 ·

(
x̃i+1 − E − ∆i+1

n

)
. (4.10.11)

Since u attains maximum at x, we have ∆ui+1 ≤ 0, i.e., zi+1 ≤ 0, where

zi+1
def
= ∆Vi+1 + 2 · α · σ ·∆Ei+1 − α2 · (∆Ei+1)

2. (4.10.12)

Substituting the expressions (4.10.11) for ∆Vi+1 and (4.10.9) for ∆Ei+1 into this formula,

we conclude that

zi+1 =
4

n
·∆i+1 · ei+1, (4.10.13a)

where

ei+1
def
= −(E − α · σ) +

(
x̃i+1 − 1 + α2

n
·∆i+1

)
(4.10.13b)

and

E − α · σ ≥ x̃i+1 − 1 + α2

n
·∆i+1. (4.10.14)

We can also change both xi and xi+1 at the same time. In this case, from the fact that

u attains the maximum at x, we conclude that u + ∆u ≤ u, i.e., that

z
def
= ∆V + 2 · α · σ ·∆E − α2 · (∆E)2. (4.10.15)

Here, the change ∆M in M is simply the sum of the changes coming from xi and xi+1:

∆M = ∆Mi + ∆Mi+1, (4.10.16)

and the change ∆E in E is also the sum of the corresponding changes:

∆E = ∆Ei + ∆Ei+1. (4.10.17)
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So, for

∆V = ∆M −∆(E2) = ∆M − 2 · E ·∆E −∆E2,

we get

∆V = ∆Mi + ∆Mi+1 − 2 · E ·∆Ei − 2 · E ·∆Ei+1−

(∆Ei)
2 − (∆Ei+1)

2 − 2 ·∆Ei ·∆Ei+1.

Hence,

∆V = (∆Mi − 2 · E ·∆Ei − (∆Ei)
2)+

(∆Mi+1 − 2 · E ·∆Ei+1 − (∆Ei+1)
2)− 2 ·∆Ei ·∆Ei+1,

i.e.,

∆V = ∆Vi + ∆Vi+1 − 2 ·∆Ei ·∆Ei+1. (4.10.18)

Substituting expressions (4.10.16), (4.10.17), and (4.10.18) into the formula (4.10.15) for

z, we conclude that

z = ∆V + 2 · α · σ ·∆E − α2 · (∆E)2 =

∆Vi + ∆Vi+1 − 2 ·∆Ei ·∆Ei+1 + 2α · σ ·∆Ei + 2α · σ ·∆Ei+1−

α2 · (∆Ei)
2 − α2 · (∆Ei+1)

2 − 2 · α2 ·∆Ei ·∆Ei+1.

Hence,

z = (∆Vi + 2 · α · σ ·∆Ei − α2 · (∆Ei)
2)+

(∆Vi+1 + 2 · α · σ ·∆Ei+1 − α2 · (∆Ei+1)
2)− 2 · (1 + α2) ·∆Ei ·∆Ei+1.

From the formulas (4.10.5) and (4.10.12), we know that the first expression is zi and that

the second expression is zi+1, so

z = zi + zi+1 − 2 · (1 + α2) ·∆Ei ·∆Ei+1.

We already have the expressions (4.10.6), (4.10.13), (4.10.2), and (4.10.9) for, correspond-

ingly, zi, zi+1, ∆Ei, and ∆Ei+1, so we conclude that z =
4

n
·D(E ′), where E ′ def

= E − α · σ
and

D(E ′) def
= ∆i ·

(
E ′ −

(
x̃i +

1 + α2

n
·∆i

))
+
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∆i+1 ·
(
−E ′ +

(
x̃i+1 − 1 + α2

n
·∆i+1

))
+ 2 · (1 + α2) · ∆i ·∆i+1

n
. (4.10.19)

Since z ≤ 0, we have D(E ′) ≤ 0 (for the value E ′ = E − α · σ corresponding to the

optimizing vector x).

The expression D(E ′) is a linear function of E ′. From (4.10.7) and (4.10.14), we know

that

x̃i+1 − 1 + α2

n
·∆i+1 ≤ E ′ ≤ x̃i +

1 + α2

n
·∆i.

For E ′ = E− def
= x̃i+1 − 1 + α2

n
·∆i+1, we have

D(E−) = ∆i · fi +
2 · (1 + α2)

n
·∆i ·∆i+1,

where

fi
def
= −x̃i + x̃i+1 − 1 + α2

n
·∆i+1 − 1 + α2

n
·∆i,

hence D(E−) = ∆i · gi, where

gi
def
= −x̃i + x̃i+1 +

1 + α2

n
·∆i+1 − 1 + α2

n
·∆i.

We assumed that no narrowed interval is a proper subset of any other. How can we

describe this condition in algebraic terms? Let us denote δi
def
=

1 + α2

n
·∆i; then, the i-th

narrowed interval has the form [x̃i− δi, x̃i + δi]. If [x̃i− δi, x̃i + δi] is a proper subinterval of

[x̃j − δj, x̃j + δj], this means that x̃i − δi > x̃j − δj and x̃i + δi < x̃j + δj, i.e., equivalently,

that

δi − δj < x̃i − x̃j < δj − δi.

This inequality is equivalent to δj > δi and |x̃i− x̃j| < δj − δi. Similarly, the condition that

the j-th narrowed interval is a proper subinterval of the i-th is equivalent to δj < δi and

|x̃i − x̃j| < δi − δj. Both cases can be described by a single inequality |x̃i − x̃j| < |δi − δj|.
Thus, the condition that no narrowed interval can be a proper subinterval of any other

narrowed interval can be described as

|x̃i − x̃j| ≥ |δi − δj|. (4.10.20)
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In particular, we have |x̃i − x̃i+1| ≥ |δi − δi+1|.
Let us first consider the case when

|x̃i+1 − xi| > |δi − δi+1|.

Since the values x̃i are sorted in increasing order, we have x̃i+1 ≥ x̃i, hence

x̃i+1 − x̃i = |x̃i+1 − x̃i| > |δi − δi+1| ≥ δi − δi+1.

So, we conclude that D(E−) > 0.

For E = E+ def
= x̃i +

1 + α2

n
·∆i, we have

D(E+) = ∆i+1 · fi+1 +
2 · (1 + α2)

n
·∆i ·∆i+1,

where

fi+1
def
= −x̃i + x̃i+1 − 1 + α2

n
·∆i+1 − 1 + α2

n
·∆i,

hence D(E+) = ∆i+1 · gi+1, where

gi+1
def
= −x̃i + x̃i+1 +

1 + α2

n
·∆i − 1 + α2

n
·∆i+1.

Here, from |x̃i+1 − x̃i| > |δi − δi+1|, we also conclude that D(E+) > 0.

Since the linear function D(E ′) is positive on both endpoints of the interval [E−, E+], it

must be positive for every value E ′ from this interval, which contradicts to our conclusion

that D(E ′) ≤ 0 for the actual value E ′ = E − α · σ ∈ [E−, E+]. This contradiction shows

that the maximum of U is indeed attained at one of the values x(k), hence the algorithm is

justified.

The general case when |x̃i − x̃j| ≥ |δi − δj| can be obtained as a limit of cases when

we have strict inequality. Since the function U is continuous, the value U continuously

depends on the input bounds, so by tending to a limit, we can conclude that our algorithm

works in the general case as well.

Comment. This algorithm can be naturally extended to an O(nm) time algorithm for the

case of m measuring instruments.
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4.11 Other Statistical Characteristics – Skewness

4.11.1 Formulation of the Problem

Once we have several results x̃1, . . . , x̃n of measuring some physical quantity, to check

whether the distribution is symmetric, we compute its sample skewness S(x̃1, . . . , x̃n) =
1

n

n∑

i=1

(x̃i − E)3.

By the interval skewness S = [S, S] of the interval data, we mean the interval

S
def
= {S(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn}

filled by the values S(x1, . . . , xn) corresponding to different xi ∈ xi.

For computing the range of skewness under interval uncertainty, no effective algorithm

was previously known.

4.11.2 New Results

Reduction to computing S. In order to compute the interval S, we must compute

both endpoints S and S of this interval.

Let us first show that if we can compute S, then we can easily compute S as well. Indeed,

skewness is an odd function: S(−x1, . . . ,−xn) = −S(x1, . . . , xn); thus, for intervals −xi =

−[xi, xi] = [−xi,−xi], we have S(−x1, . . . ,−xn) = −S(x1, . . . ,xn). From this relation

between the skewness intervals, we can conclude that S(−x1, . . . ,−xn) = −S(x1, . . . ,xn).

Thus, if we know how to compute S(x1, . . . ,xn) for an arbitrary collection of intervals

xi, we can thus compute S(x1, . . . ,xn) as −S(−x1, . . . ,−xn)

In view of this comment, in the remaining part of the section, we will only consider an

algorithm for computing S.

The quadratic time algorithm for computing S in case of subset property.
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1◦. Since the interval data satisfies the subset property, after we sort these elements in lexi-

cographic order, it can be shown that both the lower endpoints xi and the upper endpoints

xi are sorted in non-decreasing order: xi ≤ xi+1 and xi ≤ xi+1.

2◦. The maximum of a differentiable function S(x1, . . . , xn) on an interval [xi, xi] can be

attained either in an internal point of this interval, or at one of the endpoints.

If the maximum is attained at an internal point, then the first derivative is 0

(
∂S

∂xi

= 0

)

and the second derivative should be non-positive

(
∂2S

∂x2
i

≤ 0

)
.

If the maximum is attained at the left endpoint, the function S cannot be increasing

at this point, so we must have
∂S

∂xi

≤ 0. Similarly, if the maximum is attained at the right

endpoint, the function S cannot be decreasing at this point, so we must have
∂S

∂xi

≥ 0.

For skewness,
∂S

∂xi

=
3

n
· (xi − E)2 − 3

n
·

n∑

j=1

(xj − E)2 · ∂E

∂xi

.

Since
∂E

∂xi

=
1

n
, we thus get

∂S

∂xi

=
3

n
· ((xi −E)2− V ). So, the first derivative of S has the

same sign as the expression (xi − E)2 − V .

To compute the second derivative of S, we must take into account that
∂V

∂xi

=
2

n
·(xi−E),

hence

∂2S

∂x2
i

=
3

n
·

2(xi − E)− 2(xi − E) · 1

n
− 2

n
· (xi − E) +

2

n
·

n∑

j=1

(xj − E) · 1

n


 .

Since
n∑

j=1
(xj − E) = 0, we conclude that

∂2S

∂x2
i

=
3

n
· 2 ·

(
1− 2

n

)
· (xi − E).

We have already mentioned that the problem of computing skewness only makes sense for

n > 2, because for n ≤ 2, the skewness is identically 0. For n > 2, the second derivative
∂2S

∂x2
i

has the same sign as the expression xi − E.

Thus, for skewness, we value xi at which the maximum is attained satisfies one of the

following three conditions:
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• either xi < xi < xi, (xi − E)2 − V = 0, and xi − E ≤ 0,

• or xi = xi and (xi − E)2 − V ≤ 0,

• or xi = xi and (xi − E)2 − V ≥ 0.

In the first case, (xi − E)2 = V = σ2, hence xi − E = ±σ. Since xi − E ≤ 0, we cannot

have xi − E = σ, so in this case, xi = E − σ. In the second case, (xi − E)2 ≤ V = σ2,

hence E − σ ≤ xi ≤ E + σ. In the third case, (xi −E)2 ≥ V = σ2, so either xi ≤ E − σ or

xi ≥ E + σ. So:

• either xi < xi = E − σ < xi,

• or xi = xi and E − σ ≤ xi ≤ E + σ,

• or xi = xi and either xi ≤ E − σ or xi ≥ E + σ.

In all three cases, the desired maximum of the skewness S is attained when xi is either at

one of the endpoints of the corresponding interval xi, or has the value µ
def
= E − σ.

3◦. Let us now deduce a more specific information about the values xi at which the

maximum is attained.

Based on the above description of possible cases, once we know how the intervals are

located in relation to E − σ and E + σ, we can sometimes uniquely determine the value xi

at which the maximum is attained. Namely,

• If xi ≤ E − σ, then the maximum cannot be attained at an internal point and it

cannot be attained at the value xi, so it is attained when xi = xi.

• If xi ≤ E−σ ≤ xi ≤ E+σ, then the maximum can only be attained when xi = E−σ.

• If E − σ ≤ xi ≤ E + σ, then the maximum is attained at xi = xi.

• Finally, if E + σ ≤ xi, then the maximum is attained at xi = xi.
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These conclusions can be described in the following graphical manner, in which the arrows

indicate the direction towards the corresponding maximum:

E − σ E + σ

- ¾ -

The only case when we cannot exactly determine the optimal value xi is when the

interval xi contains the value E + σ: it this case, we may have xi = xi, and we may also

have xi = max(E − σ, xi).

4◦. Let us show that the maximum of skewness is always attained at a vector x =

(x1, . . . , xn) which can be divided into three consequent fragments (some of which may

be empty):

• first, we have values xi which are smaller than E − σ;

• then, we have the values max(E − σ, xi);

• finally, we have the values xi which are larger than E + σ.

All the intervals xi that do not contain E + σ inside naturally fall into this scheme.

The only intervals that we do need to consider to prove this result are the intervals that

do contain E + σ. For each of these intervals, the corresponding values xi are either

max(E − σ, xi) or xi. What we claim is that after we sort the intervals in lexicographic

order, we will first have the values equal to max(E − σ, xi), and then the values equal to

xi. In other words, once we have a value xi = xi, all the following values will also be of the

same type.

We will show that if there is an optimizing vector at which this condition is not satisfied,

then we can rearrange it into a new vector with the same optimal value of S for which this

condition holds.
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Indeed, let us start with a vector for which, for some i, for two consequent intervals xi

and xi+1, a value xi = xi ≥ E + σ is followed by a value xi+1 = max(E − σ, xi+1) ≤ E + σ.

If there are several such indices i, we take the smallest i with this property.

According to Part 2 of this proof, we have xi ≤ xi+1 ≤ E + σ and E + σ ≤ xi ≤ xi+1.

Thus, xi = xi ≤ xi+1 and xi = xi ≥ E + σ ≥ xi+1; hence, xi ∈ xi+1. Similarly, xi+1 ∈ xi.

Thus, we can “swap” the values xi and xi+1: as a new value of xi, we take the old value

of xi+1, and vice versa. The swap does not change the average E and does not change the

sample skewness S, so the function S attains the maximum at the new values as well.

As a result of this swap, if there is now a value i′ for which xi′ is followed by max(E −
σ, xi′+1), this value i′ has to be equal to at least i + 1. If there still is such an index i′, we

apply a new swap again and thus again increase the smallest problematic value i. After

≤ n such swaps, there will be no problematic cases anymore, so we will get a sequence

which has the desired property.

5◦. To determine the optimal vector x, we must thus select a zone [x(p), x(p+1)] that contains

µ = E − σ, and an index k at which the optimal value xi switches from max(µ, xi) to xi.

Once p and k are fixed, we can uniquely determine each of the optimal values xi – some

as known numbers, some as equal to the (unknown) value µ:

• when xi ≤ x(p), we have xi = xi;

• when xi < x(p) < x(p+1) ≤ xi and i < k, we have xi = µ;

• when x(p+1) ≤ xi and i < k, we have xi = xi;

• finally, when i ≥ k, we have xi = xi.

To find µ, we must use the fact that µ = E − σ. Specifically, the average E can be

determined as
1

n
· ∑

i∈N ′
xi +

n− n′

n
· (E − σ) = E,

where the sum is taken over the set N ′ of all the indices for which xi is known, and n′ is

the total number of such indices. Similarly, the sample second moment E2 + σ2 can be
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determined as
1

n
· ∑

i∈N ′
x2

i +
n− n′

n
· (E − σ)2 = E2 + σ2.

From the first of these equations, we can determine σ as a linear function of E. Substituting

this expression into the second equation, we get a quadratic equation with the only unknown

σ, from which we can determine σ. Then, we can use the first equation to find E – and

hence find µ = E − σ.

If the resulting value of µ is indeed within the zone [x(p), x(p+1)], then we compute

the sample skewness for the corresponding values xi. Specifically, the skewness can be

computed as

1

n
·

n∑

i=1

(xi − E)3 =
1

n
·

n∑

i=1

x3
i −

3 · E
n

·
n∑

i=1

x2
i +

3 · E2

n
·

n∑

i=1

xi − E3 =

1

n
·

n∑

i=1

x3
i −

3 · E
n

·
n∑

i=1

x2
i + 2 · E3 =

1

n
· ∑

i∈N ′
x3

i +
n− n′

n
· µ3 − 3 · E

n
·

 ∑

i∈N ′
x2

i + (n− n′) · µ2


 + 2 · E3.

The largest of these skewnesses is the desired value S.

6◦. How much times does this algorithm take? Sorting takes time O(n · log(n)).

For n interval data points, we have 2n possible zone and n possible indices k – totally,

O(n2) possible pairs (p, k). For the first pair, computing the corresponding values n′,
∑

i∈N ′
xi,

∑

i∈N ′
x2

i , and
∑

i∈N ′
x3

i takes linear time. For each next pair, we, in general, change one value

in comparison with the previous pair, so each new computation takes a constant number

of steps. Thus, for O(n2) pairs, we need O(n2) time. (In some cases, we change more than

one value, but still, each value changes only once, so we still need O(n2) times.)

So, overall, we need time O(n · log(n)) + O(n) + O(n2) = O(n2).

Feasible algorithm for computing S in case of several MI. In this case, the interval

data consists of m families of intervals such that within each family, no two intervals are

proper subsets of each other.
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For S, we need to consider n2 options for each of the m subsequences corresponding to

a single MI; thus, overall, we must consider (O(n2))m = O(n2m) possible combinations –

hence we need time O(n2m).

69



www.manaraa.com

Chapter 5

Applications

In the previous chapter, we described algorithms for computing statistics under interval

uncertainty. In this chapter, we describe applications of these algorithms and other similar

algorithms. Specifically, we describe several application areas in which there is a need

to take into account interval uncertainty in statistical data processing: the seismic inverse

problem in geophysics, the problem of estimating and decreasing the clock cycle in computer

chips, the problem of separating the core from the fragments in radar data processing, and

the problem of inverse half-toning in image processing. For each of these applications, we

describe the corresponding problem, explain why interval uncertainty is important, and

describe algorithms for taking this interval uncertainty into consideration.

5.1 Geosciences

In many real-life situations, we have several types of uncertainty: measurement uncer-

tainty can lead to probabilistic and/or interval uncertainty, expert estimates come with

interval and/or fuzzy uncertainty, etc. In many situations, in addition to measurement

uncertainty, we have prior knowledge coming from prior data processing, prior knowledge

coming from prior interval constraints. In this dissertation, on the example of the seismic

inverse problem, we show how to combine these different types of uncertainty.

5.1.1 Seismic Inverse Problem: A Brief Description

In evaluations of natural resources and in the search for natural resources, it is

very important to determine earth structure. Our civilization greatly depends on
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the things we extract from the Earth, such as fossil fuels (oil, coal, natural gas), minerals,

and water. Our need for these commodities is constantly growing, and because of this

growth, they are being exhausted. Even under the best conservation policies, there is (and

there will be) a constant need to find new sources of minerals, fuels, and water.

The only sure-proof way to guarantee that there are resources such as minerals at a

certain location is to actually drill a borehole and analyze the materials extracted. However,

exploration for natural resources using indirect means began in earnest during the first half

of the 20th century. The result was the discovery of many large relatively easy to locate

resources such as the oil in the Middle East.

However, nowadays, most easy-to-access mineral resources have already been discovered.

For example, new oil fields are mainly discovered either at large depths, or under water, or

in very remote areas – in short, in the areas where drilling is very expensive. It is therefore

desirable to predict the presence of resources as accurately as possible before we invest in

drilling.

From previous exploration experiences, we usually have a good idea of what type of

structures are symptomatic for a particular region. For example, oil and gas tend to

concentrate near the top of natural underground domal structures. So, to be able to

distinguish between more promising and less promising locations, it is desirable to determine

the structure of the Earth at these locations. To be more precise, we want to know the

structure at different depths z at different locations (x, y).

Data that we can use to determine the earth structure. In general, to determine

the Earth structure, we can use different measurement results that can be obtained without

actually drilling the boreholes: e.g., gravity and magnetic measurements, analyzing the

travel-times and paths of seismic ways as they propagate through the earth, etc.

To get a better understanding of the Earth structure, we must rely on active seismic

data – in other words, we must make artificial explosions, place sensors around them, and

measure how the resulting seismic waves propagate. The most important information about
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the seismic wave is the travel-time ti, i.e., the time that it takes for the wave to travel from

its source to the sensor. to determine the geophysical structure of a region, we measure

seismic travel times and reconstruct velocities at different depths from these data. The

problem of reconstructing this structure is called the seismic inverse problem.

Known algorithms for solving the seismic inverse problem: description, suc-

cesses, limitations. We want to find the values of the velocity v(~x) at different 3-D

points ~x. Based on the finite number of measurements, we can only reconstruct a finite

number of parameters. So, we take a rectangular grid and to reconstruct the velocities vj

at different grid points.

Algorithm for the forward problem: brief description. Once we know the velocities

vj in each cell j, we can then determine the paths which seismic waves take. Seismic waves

travel along the shortest path – shortest in terms of time. It can be easily determined that

for such paths, within each cell, the path is a straight line, and on the border between

the two cells with velocities v and v′, the direction of the path changes in accordance with

Snell’s law
sin(ϕ)

v
=

sin(ϕ′)
v′

, where ϕ and ϕ′ are the angles between the paths and the

line orthogonal to the border between the cells. (If this formula requires sin(ϕ′) > 1, this

means that this wave cannot penetrate into the neighboring cell at all; instead, it bounces

back into the original cell with the same angle ϕ.)

In particular, we can thus determine the paths from the source to each sensor. The

travel-time ti along i-th path can then be determined as the sum of travel-times in different

cells j through which this path passes: ti =
∑
j

`ij

vj

, where `ij denotes the length of the part

of i-th path within cell j.

This formula becomes linear if we replace the original unknowns – velocities vj – by their

inverses sj
def
=

1

vj

, called slownesses. In terms of slownesses, the formula for the travel-time

takes the simpler form ti =
∑
j

`ij · sj.
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Algorithm for the inverse problem: general description. There are several algo-

rithms for solving this inverse problem; see, e.g., [83, 171, 214]. The most widely used is

the following iterative algorithm proposed by John Hole [83].

At each stage of this algorithm, we have some approximation to the desired slownesses.

We start with some reasonable initial slownesses, and we hope that after several iterations,

we will be able to get slownesses which are much closer to the actual values.

At each iteration, we first use the currently known slownesses sj to find the correspond-

ing paths from the source to each sensor. Based on these paths, we compute the predicted

values ti =
∑
j

`ij · sj of travel-times.

Since the currently known slownesses sj are only approximately correct, the travel-

times ti (which are predicted based on these slownesses) are approximately equal to the

measured travel-times t̃i; there is, in general, a discrepancy ∆ti
def
= t̃i−ti 6= 0. It is therefore

necessary to use these discrepancies to update the current values of slownesses, i.e., replace

the current values sj with corrected values sj + ∆sj. The objective of this correction is

eliminate (or at least decrease) the discrepancies ∆ti 6= 0. In other words, the objective is

to make sure that for the corrected values of the slowness, the predicted travel-times are

closer to t̃i.

Of course, once we have changed the slownesses, the shortest paths will also change;

however, if the current values of slownesses are reasonable, the differences in slowness are

not large, and thus, paths will not change much. Thus, in the first approximation, we can

assume that the paths are the same, i.e., that for each i and j, the length `ij remains the

same. In this approximation, the new travel-times are equal to
∑

`ij · (sj + ∆sj). The

desired condition is then
∑

`ij · (sj +∆sj) = t̃i. Subtracting the formula ti =
∑
j

`ij · sj from

this expression, we conclude that the corrections ∆sj must satisfy the following system of

(approximate) linear equations:
∑

`ij ·∆sj ≈ ∆ti.

Solving this system of linear equations is not an easy task, because we have many

observations and many cell values and thus, many unknowns, and for a system of linear

equations, computation time to solve it grows as a cube n3 of the number of variables n.
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So, instead of the standard methods for solving a system of linear equations, researchers

use special faster geophysics-motivated techniques (described below) for solving the corre-

sponding systems. These methods are described, in detail, in the next subsection.

Once we solve the corresponding system of linear equations, we compute the updated

values ∆sj, compute the new (corrected) slownesses sj + ∆sj, and repeat the procedure

again. We stop when the discrepancies become small; usually, we stop when the mean

square error
1

n

n∑

i=1

(∆ti)
2 no longer exceeds a given threshold. This threshold is normally

set up to be equal to the measurement noise level, so that we stop iterations when the

discrepancy between the model and the observations falls below the noise level – i.e., when,

for all practical purposes, the model is adequate.

Algorithm for the inverse problem: details. Let us describe, in more detail, how

the corresponding linear system of equations is usually solved. In other words, for a given

cell j, how do we find the correction ∆sj to the current value of slowness sj in this cell?

Let us first consider the simplified case when there is only path, and this path is going

through the j-th cell. In this case, cells through which this path does not go does not need

any correction. To find the corrections ∆sj for all the cells j through which this path goes,

we only have one equation
∑
j

`ij · ∆sj = ∆ti. The resulting system of linear equations is

clearly under-determined: we have a single equation to find the values of several variables

∆sj. Since the system is under-determined, we have a infinite number of possible solutions.

Our objective is to select the most geophysical reasonable of these solutions.

For that, we can use the following idea. Our single observation involves several cells;

we cannot distinguish between the effects of slownesses in different cells, we only observe

the overall effect. Therefore, there is no reason to assume that the value ∆sj in one of

these cells is different from the values in other cells. It is thus reasonable to assume that all

these values are close to each other: ∆sj ≈ ∆sj′ . The least squares method enables us to

describe this assumption as minimization of the objective function
∑
j,j′

(∆sj −∆sj′)
2 under

the condition that
∑

`ij ·∆sj = ∆ti. The minimum is attained when all the values ∆sj are
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equal. Substituting these equal values into the equation
∑
j

`ij ·∆sj = ∆ti, we conclude that

Li ·∆s = ∆ti, where Li =
∑
j

`ij is the overall length of i-th path. Thus, in the simplified

case in which there is only one path, to the slowness of each cell j along this path, we add

the same value ∆sj =
∆ti
Li

.

Let us now consider the realistic case in which there are many paths, and moreover,

for many cells j, there are many paths i which go through the corresponding cell. For a

given cell j, based on each path i passing through this cell, we can estimate the correction

∆sj by the corresponding value ∆sij
def
=

∆ti
Li

. Since there are usually several paths going

through the j-th cell, we have, in general, several different estimates ∆sj ≈ ∆sij. Again,

the least squares approach leads to
∑
i
(∆sj −∆sij)

2 → min, hence to ∆sj as the arithmetic

average of the values ∆sij.

Comment. To take into account that paths with larger `ij provide more information,

researchers also used weighted average, with weight increasing with `ij.

Successes of the known algorithms. The known algorithms have been actively used

to reconstruct the slownesses, and, in many practical situations, they have led to reasonable

geophysical models.

Limitations of the known algorithms. Often, the velocity model that is returned by

the existing algorithm is not geophysically meaningful: e.g., it predicts velocities outside

of the range of reasonable velocities at this depth. To avoid such situations, it is desirable

to incorporate the expert knowledge into the algorithm for solving the inverse problem.

We will describe our new result of how to do it.

5.1.2 New Result: Incorporate the Expert Knowledge into the

Algorithm for Solving the Inverse Problem

Case of interval prior knowledge. For each cell j, a geophysicist often provides us

with his or her estimate of possible values of the corresponding slowness sj. Sometimes,
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this estimates comes in the form of an interval [sj, sj] that is guaranteed to contain the

(unknown) actual value of slowness.

It is desirable to modify Hole’s algorithm in such a way that on all iterations, slownesses

sj stay within the corresponding intervals. Such a modification is described in [7, 8].

Namely, in the original Hole’s algorithm, once we know the current approximations s
(k)
j

to slownesses, then, along each path i, among all corrections ∆sij that provide the desired

compensation, i.e.., for which
c∑

j=1

`ij ·∆sij = ∆ti, (5.1.1)

we find the assignment that minimizes the objective function
∑
j,j′

(∆sij −∆sij′)
2, i.e., equiv-

alently, that minimizes the variance of the values ∆sij along this path:

V
def
=

1

n
·

c∑

j=1

∆s2
ij −


 1

n
·

c∑

j=1

∆sij




2

. (5.1.2)

In the presence of the interval prior information, on each iteration of Hole’s algorithm, we

must still minimize the objective function (5.1.2), but this time, we minimize it under two

constraint: the same constraint (5.1.1) and the new constraints

sj ≤ s
(k)
j + ∆sij ≤ sj. (5.1.3)

We have found the following efficient O(c · log(c)) time algorithm for solving the corre-

sponding constraint optimization problem. We start with the initial slowness values s
(0)
j

which are within the given intervals [sj, sj].

On each iteration of the new procedure, we start with the slowness values s
(k−1)
j which

are within given intervals [sj, sj]. Based on these slownesses, we find the paths from the

sources to the sensors, compute the predicted travel-times ti along each path, and the

discrepancies ∆ti = t̃i − ti.

We then compute, for each cell j, the values ∆j = sj − s
(k−1)
j and ∆j = sj − s

(k−1)
j . We

will consider the case when ∆ti > 0; the case when ∆ti < 0 is treated similarly. In this

case, we first sort all c values ∆j along the i-th path into a non-decreasing sequence

∆(1) ≤ ∆(2) ≤ . . . ≤ ∆(c).
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Then, for every p from 0 to c, we compute the values Ap and Lp as follows:

A0 = 0, L0 = Li, Ap = Ap−1 + `i(p) ·∆(p), Lp = Lp−1 − `i(p).

After that, for each p, we compute Sp = Ap + Lp ·∆(p+1), and we find p for which Sp−1 ≤
∆ti < Sp. Once this p is found, we take ∆si(j) = ∆j for j ≤ p, and for j > p, we take

∆s(j) =
∆ti − Ap

Lp

.

When ∆ti < 0, we similarly sort the values ∆j into a decreasing sequence, and find p

so that the first p corrections are “maxed out” to ∆j, and the rest c − p corrections are

determined from the condition ∆si(j) =
∆ti − Ap

Lp

.

Once we have computed these corrections for all the paths, then for each cell j, we take

the average (or weighted average) of all the corrections coming from all the paths which

pass through this cell.

Case of fuzzy prior knowledge. In general, experts are often not 100% sure about the

corresponding intervals. They can usually produce a wider interval [sj, sj] of which they are

practically 100% certain, but in addition to that, they can also produce narrower intervals

about which their degree of certainty is smaller. As a result, instead of a single interval,

we have a nested family of intervals corresponding to different levels of uncertainty – i.e.,

in effect, a fuzzy interval (of which different intervals are α-cuts).

So, instead of simply saying that a given solution to the seismic inverse problem is

satisfying or not, we provide a degree to which the given solution is satisfying – as the

largest α for which the velocity at every point is within the corresponding α-cut intervals.

To solve the seismic inverse problem under such fuzzy uncertainty, we apply the interval

algorithm for α-cuts corresponding to α = 0, α = 0.1, α = 0.2, etc., until we reach such a

value of α that the process no longer converges. Then, the solution corresponding to the

previous value α – i.e., to the largest value α for which the process converged – is returned

as the desired solution to the seismic inverse problem.
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Case of probabilistic prior knowledge. Often, prior information comes from process-

ing previous observations of the region of interest. In this case, before our experiments, for

each cell j, we know a prior (approximate) slowness value s̃j, and we know the accuracy

(standard deviation) σj of this approximate value s̃j. It is known that this prior informa-

tion can lead to much more accurate velocity models; see, e.g., [128]. How can we modify

Hole’s algorithm so that it takes this prior information into account?

Due to the prior knowledge, for each cell j, the ratio
(s

(k)
j + ∆sij)− s̃j

σj

is normally

distributed with 0 mean and variance 1. Since each path i consists of a reasonable number

of cells, we can thus conclude that the sample variance of this ratio should be close to σj,

i.e., that

1

n
·

c∑

j=1

((s
(k)
j + ∆sij)− s̃j)

2

σ2
j

= 1. (5.1.4)

So, to find the corrections ∆sij, we must minimize the objective function (5.1.2) under the

constraints (5.1.1) and (5.1.4).

By applying the Lagrange multiplier method to this problem, we can reduce this problem

to the unconstrained minimization problem

1

n
·

c∑

j=1

∆s2
ij −


 1

n
·

c∑

j=1

∆sij




2

+ λ ·



c∑

j=1

`ij ·∆sij −∆ti


 +

µ · 1

n
·

c∑

j=1

(s
(k)
j + ∆sij − s̃j)

2

σ2
j

→ min . (5.1.5)

Differentiating this equation by ∆sij and equating the derivative to 0, we conclude that

2

n
·∆sij − 2

n
·∆s + λ · `ij +

2µ

n · σ2
j

· (s(k)
j + ∆sij − s̃j) = 0,

where

∆s
def
=

1

n
·

c∑

j=1

∆sij. (5.1.6)

Once we fix λ, µ, and ∆s, we get an explicit expression for the values ∆sij. Substituting

these expressions into the equations (5.1.1), (5.1.4), and (5.1.6), we get an easy-to-solve
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system of 3 non-linear equations with 3 unknowns, which we can solve, e.g., by using

Newton’s method.

Now, instead of explicit formulas for a transition from s
(k)
j to s

(k+1)
j , we need a sepa-

rate iteration process – so the computation time is somewhat larger, but we get a more

geophysically meaningful velocity map – that takes prior knowledge into account.

Combination of different types of prior knowledge. In many real-life situations, we

have both the prior measurement results – which lead to the probabilistic prior knowledge,

and expert estimates – which lead to interval and fuzzy prior knowledge. In the presence of

probabilistic and interval prior knowledge, we must minimize (5.1.2) under the constraints

(5.1.1), (5.1.3), and (5.1.4).

If we replace the equality in (5.1.4) by an inequality ≤ 1, then we get a problem of

minimizing a convex function under convex constraints, a problem for which there are

known efficient algorithms; see, e.g., [201].

For example, we can use a method of alternating projections, in which we first add

a correction that satisfy the first constraint, then the additional correction that satisfies

the second constraint, etc. In our case, we first add equal values of ∆sij to satisfy the

constraint (5.1.2), then we restrict the values to the nearest points from the interval [sj, sj]

– to satisfy the constraint (5.1.3), and after that, find the extra corrections that satisfy the

condition (5.1.4), after which we repeat the cycle again until the process converges.

5.2 Computer Engineering

In chip design, one of the main objectives is to decrease its clock cycle. On the design

stage, this time is usually estimated by using worst-case (interval) techniques, in which we

only use the bounds on the parameters that lead to delays. This analysis does not take into

account that the probability of the worst-case values is usually very small; thus, the resulting

estimates are over-conservative, leading to unnecessary over-design and under-performance

79



www.manaraa.com

of circuits. If we knew the exact probability distributions of the corresponding parameters,

then we could use Monte-Carlo simulations (or the corresponding analytical techniques)

to get the desired estimates. In practice, however, we only have partial information about

the corresponding distributions, and we want to produce estimates that are valid for all

distributions which are consistent with this information.

In this dissertation, we will develop a general technique that allows us, in particular, to

provide such estimates for the clock time.

5.2.1 Problem of Decreasing Clock Cycle: A Brief Introduction

Decreasing clock cycle: a practical problem. In chip design, one of the main objec-

tives is to decrease the chip’s clock cycle. It is therefore important to estimate the clock

cycle on the design stage.

The clock cycle of a chip is constrained by the maximum path delay over all the circuit

paths D
def
= max(D1, . . . , DN), where Di denotes the delay along the i-th path. Each path

delay Di is the sum of the delays corresponding to the gates and wires along this path.

Each of these delays, in turn, depends on several factors such as the variation caused

by the current design practices, environmental design characteristics (e.g., variations in

temperature and in supply voltage), etc.

Traditional (interval) approach to estimating the clock cycle. Traditionally, the

delay D is estimated by using the worst-case analysis, in which we assume that each of the

corresponding factors takes the worst possible value (i.e., the value leading to the largest

possible delays). As a result, we get the time delay that corresponds to the case when all

the factors are at their worst.

It is necessary to take probabilities into account. The worst-case analysis does

not take into account that different factors come from independent random processes. As

a result, the probability that all these factors are at their worst is extremely small. For
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example, there may be slight variations of delay time from gate to gate, and this can indeed

lead to gate delays. The worst-case analysis considers the case when all these random

variations lead to the worst case; since these variations are independent, this combination

of worst cases is highly unprobable.

As a result, the current estimates of the chip clock time are over-conservative, over up

to 30% above the observed clock time. Because of this over-estimation, the clock time

is set too high – i.e., the chips are usually over-designed and under-performing; see, e.g.,

[26, 37, 38, 162, 161, 163, 164]. To improve the performance, it is therefore desirable to

take into account the probabilistic character of the factor variations.

Robust statistical methods are needed. If we knew the exact probability distribu-

tions of the corresponding parameters, then we could use Monte-Carlo simulations (or the

corresponding analytical techniques) to get the desired estimates. In practice, however, we

only have partial information about the corresponding distributions. For a few parameters,

we know the exact distribution, but for most parameters, we only know the mean and

some characteristic of the deviation from the mean – e.g., the interval that is guaranteed

to contain possible values of this parameter.

In principle, we could pick up some distributions which are consistent with this partial

information – e.g., truncated normal distributions, compute the maximum delays D cor-

responding to all these distributions, and then take the largest Dmax of these computed

maximum delays D as the clock time. This procedure will guarantee that the path de-

lay D does not exceed the clock time if the actual distribution is one of the picked ones.

However, it is quite possible that some other possible distributions (different from the ones

we picked), the corresponding path delay D is larger than Dmax. As a result, we may be

underestimating the clock time. If we set the clock time too low, we may have operations

that did not have time to finish before the next cycle starts – and this is even worse than

overestimating.

It is therefore desirable to provide bounds that work for all the distributions which are
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consistent with the given information. In statistics, estimates which are guaranteed for all

distributions from some non-parametric class are called robust (see, e.g., [85]). In these

terms, our objective is to provide robust statistical estimates for the clock time.

5.2.2 New Result: General Techniques to Provide Robust Esti-

mates for the Clock Time.

In this dissertation, we will develop general techniques that allow us, in particular, to

provide robust estimates for the clock time.

In deriving these estimates, we will use the extensions of interval methods to cases

with partial information about probabilities described, e.g., in [64, 111, 108, 109]; see also

[21, 22, 23, 24, 124].

Towards a mathematical formulation of the problem. 1◦. How the desired delay

d depends on the parameters? The variations in the each gate delay d are caused by the

difference between the actual and the nominal values of the corresponding parameters. It

is therefore desirable to describe the resulting delay d as a function of these differences

x1, . . . , xn. Since these differences are usually small, we can safely ignore quadratic (and

higher order) terms in the Taylor expansion of the dependence of d on xj and assume that

the dependence of each delay d on these differences can be described by a linear function.

As a result, each path delay Di – which, as we have mentioned, is the sum of delays at

different gates and wires – can also be described as a linear function of these differences,

i.e., as Di = ai +
n∑

j=1

aij · xj for some coefficients ai and aij.

Thus, the desired maximum delay D = max
i

Di has the form

D = max
i


ai +

n∑

j=1

aij · xj


 . (5.2.1)
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2◦. How we can describe such functions in general terms? In this dissertation, we will use

two properties of the time delay. First, we will use the fact that the time delay is always

non-negative; second, we will use the fact that the dependence (5.2.1) is convex.

Let us recall that a function f : Rm → R is called convex if

f(α · x + (1− α) · y) ≤ α · f(x) + (1− α) · f(y)

for every x, y ∈ Rm and for every α ∈ (0, 1). It is known that the maximum of several linear

functions is convex, so the function (5.2.1) is convex. Vice versa, every convex function

can be approximated, with an arbitrary accuracy, by maxima of linear functions – i.e., by

expressions of type (5.2.1).

So, in general terms, we can say that we are interested in the robust statistical properties

of the value y = F (x1, . . . , xn), where F is a non-negative convex function of the variables

xj.

3◦.Our objective: We want to find the smallest possible value y0 such that for all possible

distributions consistent with the known information, we have y ≤ y0 with the probability

≥ 1− ε (where ε > 0 is a given small probability).

4◦. What information can we use for these estimations? We can safely assume that different

factors xj are statistically independent. About some of the variables xj, we know their exact

statistical characteristics; about some other variables xj, we only know their interval ranges

[xj, xj] and their means Ej.

5◦. There is additional property: the dependency is non-degenerate. We only have par-

tial information about the probability distribution of the variables xj. For each possible

probability distribution p, we can find the largest value yp for which, for this distribution,

y ≤ yp with probability ≥ 1− ε. The desired value y0 is the largest of the values yp corre-

sponding to different probability distributions p: y0 = sup
p∈P

yp, where P denotes the class of

probability distributions p which are consistent with the known information.

If we learn some additional information about the distribution of xj – e.g., if we learn

that xj actually belongs to a proper subinterval of the original interval [xj, xj] – we thus
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decrease the class P of distributions p which are consistent with this information, to a new

class P ′ ⊂ P . Since the class has decreased, the new value y′0 = sup
p∈P′

yp is the maximum

over a smaller set and thus, cannot be larger than the original value y0: y′0 ≤ y0.

From the purely mathematical viewpoint, it is, in principle, possible that the desired

value y does not actually depend on some of the variables xj. In this case, if we narrow

down the interval of possible values of the corresponding variable xj, this will not change

the resulting value y0.

For the chip design problem, it is reasonable to assume that such variables have already

been weeded out, and that the resulting function F (x1, . . . , xn) is non-degenerate in the

sense that every time we narrow down one of the intervals [xj, xj], the resulting value y0

actually decreases: y′0 < y0.

As a result, we arrive at the following problem.

Formulation of the problem and the main result.

GIVEN: • natural numbers n, and k ≤ n;

• a real number ε > 0;

• a function y = F (x1, . . . , xn) (algorithmically defined) such that for every

combination of values xk+1, . . . , xn, the dependence of y on x1, . . . , xk is

convex;

• n − k probability distributions xk+1, . . . , xn – e.g., given in the form of cu-

mulative distribution function (cdf) Fj(x), k + 1 ≤ j ≤ n;

• k intervals x1, . . . ,xk, and

• k values E1, . . . , Ek,

such that for every x1 ∈ [x1, x1], . . . , xk ∈ [xk, xk], we have F (x1, . . . , xn) ≥ 0

with probability 1.

TAKE: all possible joint probability distributions on Rn for which:

• all n random variables are independent;
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• for each j from 1 to k, xj ∈ xj with probability 1 and the mean value of xj

is equal to Ej;

• for j > k, the variable xj has a given distribution Fj(x).

FIND: find the smallest possible value y0 such that for all possible distributions con-

sistent with the known information, we have y
def
= F (x1, . . . , xn) ≤ y0 with

probability ≥ 1− ε.

PROVIDED: that the problem is non-degenerate in the

sense that if we narrow down one of the intervals xj, the value y0 decreases.

Towards an algorithm for computing y0. The following result explains how we can

compute this value y0.

Proposition 1 The desired value y0 is attained when for each j from 1 to k, we use a

2-point distribution for xj, in which:

• xj = xj with probability p
j

def
=

xj − Ej

xj − xj

.

• xj = xj with probability pj
def
=

Ej − xj

xj − xj

.

The proof of Proposition 1 is as follows.

By definition, y0 is the largest value of yp over all possible distributions p ∈ P . This

means that for the given y0, for all possible distributions p ∈ P , we have Prob(D ≤ y0) ≥
1 − ε. Let p ∈ P be the “worst-case” distribution, i.e., the distribution for which the

probability Prob(D ≤ y0) is the smallest. Let us show that this “worst case” occurs when

all k variables x1, . . . , xk have the 2-point distributions described in Proposition 1.

Let us fix the value j ≤ k and show that in the “worst case”, xj indeed has the

desired 2-point distribution. Without losing generality, we can take j = 1. Let us fix

the distributions for x2, . . . , xk as in the worst case. Then, the fact that the probability

Prob(D ≤ y0) is the smallest means that if we replace the worst-case distribution for x1

85



www.manaraa.com

with some other distribution, we can only increase this probability. In other words, when

we correspondingly fix the distributions for x2, . . . , xk, the probability Prob(D ≤ y0) attains

the smallest possible value at the desired distribution for x1.

In reality, the distribution for x1 is located on an interval x1 = [x1, x1], i.e., on a set

with infinitely many points. However, with an arbitrary large value N (and thus, for

an arbitrarily small discretization error δ = (x1 − x1)/N), we can assume that all the

distributions are located on a finite grid of values

v0
def
= x1, v1

def
= x1 + δ, v2

def
= x1 + 2δ, . . . , vN = x1.

The smaller δ, the better this approximation. Thus, without losing generality, we can

assume that the distribution of x1 is located on finitely many points vi.

In this approximation, the probability distribution for x1 can be described by the prob-

abilities qi
def
= p1(vi) of different values vi.

The minimized probability Prob(D ≤ y0) can be described as the sum of the probabili-

ties of different combinations (x1, . . . , xn) over all the combinations for which D(x1, . . . , xn) ≤
y0. We assumed that all the variables xj are independent. Thus, the probability of

each combination (x1, . . . , xn) is equal to the product of the corresponding probabilities

p1(x1) · p2(x2) · . . . Since the probability distributions for x2, . . . are fixed, the minimized

probability is thus a linear combination of probabilities p1(vi), i.e., of the probabilities qi.

In other words, the minimized probability has the form
N∑

i=0
ci · qi for some coefficients ci.

By describing the probability distribution on x1 via the probabilities qi = p1(vi) of

different values vi ∈ [x1, x1], we automatically restrict ourselves to distributions which are

located on this interval. The only restrictions that we have on the probability distribution

of x1 is that it is a probability distribution, i.e., that qi ≥ 0 for all i and
N∑

i=0
qi = 1, and

that the mean value of this distribution is equal to E1, i.e., that
N∑

i=0
qi · vi = E1. Thus, the

worst-case distribution for x1 is a solution to the following linear programming problem:

Minimize
N∑

i=0

ci · qi
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under the constraints
N∑

i=0

qi = 1,

N∑

i=0

qi · vi = E1,

qi ≥ 0, i = 0, 1, 2, . . . , N.

It is known that the solution to the linear programming problem is always attained at a

vertex of the corresponding constraint set. In other words, in the solution to the linear

programming problem with N + 1 unknowns q0, q1, . . . , qN , at least N + 1 constraints

are equalities. Since we already have 2 equality constraints, this means that out of the

remaining constraints qi ≥ 0, at least N − 1 are equalities. In other words, this means that

in the optimal distribution, all but two values of qi = p1(vi) are equal to 0.

Thus, the “worst-case” distribution for x1 is located on 2 points v and v′ within the

interval [x1, x1]. Let us prove, by reduction to a contradiction, that these two points cannot

be different from the endpoints of this interval. Indeed, let us assume that they are different.

Without losing generality, we can assume that v ≤ v′. Then, this “worst-case” distribution

is actually located on the proper subinterval [v, v′] ⊂ [x1, x1] of the original interval x1.

Since the maximum y0 of yp is attained on this distribution, replacing the original interval

x1 with its proper subinterval [v, v′] would not change the value y0 – while our assumption

of non-degeneracy states that such a replacement would always lead to a smaller value y0.

This contradiction shows that the values v and v′ – on which the worst-case distribution is

located – have to be endpoints of the interval [x1, x1].

In other words, we conclude that the worst-case distribution is located at 2 points: x1

and x1. Such a distribution is uniquely determined by the probabilities p
1

and p1 of these

two points. Since the sum of these probabilities is equal to 1, it is sufficient to describe one

of these probabilities, e.g., p1; then, p
1

= 1− p1. The condition that the mean of x1 is E1,

i.e., that

p
1
· x1 + p1 · x1 = (1− p1) · x1 + p1 · x1 = E1,
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uniquely determines p1 (and hence p
1
) – exactly by the expression from Proposition 1. The

statement is proven.

Resulting algorithm for computing y0. Because of Proposition 1, we can compute

the desired value y0 by using the following Monte-Carlo simulation:

• We set each value xj, 1 ≤ j ≤ k, to be equal to xj with probability pj and to the

value xj with the probability p
j
.

• We simulate the values xj, k < j ≤ n, as random variables distributed according to

the distributions Fj(x).

• For each simulation s, 1 ≤ s ≤ Ni, we get the simulated values x
(s)
j , and then, a value

y(s) = F (x
(s)
1 , . . . , x(s)

n ). We then sort the resulting Ni values y(s) into an increasing

sequence

y(1) ≤ y(2) ≤ . . . ≤ y(Ni),

and take, as y0, the Ni · (1− ε)-th term y(Ni·(1−ε)) in this sorted sequence.

Comment about Monte-Carlo techniques. Let us remark that some readers may feel un-

comfortable with the use of Monte-Carlo techniques. This discomfort comes from the fact

that in the traditional statistical approach, when we know the exact probability distribu-

tions of all the variables, Monte-Carlo methods – that simply simulate the corresponding

distributions – are inferior to analytical methods. This inferiority is due to two reasons:

• First, by design, Monte-Carlo methods are approximate, while analytical methods

are usually exact.

• Second, the accuracy provided by a Monte-Carlo method is, in general, proportional

to ∼ 1/
√

Ni, where Ni is the total number of simulations. Thus, to achieve reasonable

quality, we often need to make a lot of simulations – as a result, the computation

time of a Monte-Carlo method becomes much longer than the time of an analytical

method.
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In robust statistic, there is often an additional reason to be uncomfortable about using

Monte-Carlo methods:

• Practitioners use these methods by selecting a finite set of distributions from the

infinite class of all possible distributions, and running simulations for the selected

distributions.

• Since we do not test all the distributions, this practical heuristic approach sometimes

misses the distributions on which the minimum or maximum of the corresponding

distribution is actually attained.

In our case, we also select a finite collection of distributions from the infinite set. However,

in contrast to the heuristic (un-justified) selection – which is prone to the above criticism,

our selection is justified. Proposition 1 guarantees that the values corresponding to the

selected distributions indeed provide the desired value y0 – the largest over all possible

distributions p ∈ P .

In such situations, where a justified selection of Monte-Carlo methods is used to solve a

problem of robust statistics, such Monte-Carlo methods often lead to faster computations

than known analytical techniques. The speed-up caused by using such Monte-Carlo tech-

niques is one of the main reasons why they were invented in the first place – to provide

fast estimates of the values of multi-dimensional integrals. Many examples of efficiency of

these techniques are given, e.g., in [177]; in particular, examples related to estimating how

the uncertainty of inputs leads to uncertainty of the results of data processing are given in

[200].

Comment about Non-linear Terms. In the formula (5.3.1), we ignored quadratic and higher

order terms in the dependence of each path time Di on the parameters xj. It is known

that the maximum D = max
i

Di of convex functions Di is always convex. So, according to

Proposition 1, the above algorithm will work if we take quadratic terms into consideration

– provided that each dependence Di(x1, . . . , xk, . . .) is still convex.
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5.3 Radar Data Processing

A radar observes the result of a space explosion. Due to radar’s low horizontal resolution,

we get a 1-D signal x(t) representing different 2-D slices. Based on these slices, we must

distinguish between the body at the core of the explosion and the slowly out-moving frag-

ments. We propose new algorithms for processing this 1-D data. Since these algorithms

are time-consuming, we also exploit the possibility of parallelizing these algorithms.

5.3.1 Formulation of the Problem

Most astronomical processes are slow; however, sometimes, space explosions happen: starts

become supernovae, planetoids are torn apart by tidal and gravitational forces, etc. Even

the Universe itself is currently viewed as a result of such an explosion – the Big Bang.

From the astrophysical viewpoint, these explosions are very important, because, e.g.,

supernovae explosions is how heavy metals spread around in the Universe.

The explosion processes are very rare and very fast, so unless they are very powerful

and spectacular – like an explosion of a nearby supernovae that happened in 1054 – they

are very difficult to observe. As a result, space explosion processes often go unnoticed.

What we do observe in most cases is the result of the space explosion, i.e., the explosion

core – the remainder of the original celestial body – surrounded by the explosion fragments.

The most well known example of such a result is the Crab Nebula formed after the 1054

supernovae explosion.

In order to better understand the corresponding physical process, it is extremely im-

portant to identify the explosion core.

In space, there is not much friction, so, due to inertia, most of the fragments travel

with approximately the same speed as in the beginning of the explosion. Dividing the

distance between the two fragments by their relative speed, we can determine – reasonably

accurately – when the explosion occurred (this is how we know that the supernovae in the

Crab Nebulae exploded in the year 1054). At that explosion time, all the fragments and
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the core were located at the same point, so it is difficult to distinguish between the core

and the fragments.

In general, we have a 2-D (and sometimes even 3-D) image of the result of the explosion.

In such situations, detecting the explosion core is an image processing problem.

However, there is one important case when we only have 1-D data. In this case, we

cannot use image processing techniques, we have to use techniques for processing 1-D data

– i.e., DSP techniques.

This is the case of nearby space explosions, when the radar is the main source of

information. A radar sends a pulse signal toward an object; this signal reflects from the

object back to the station. We can measure, very accurately, the overall time that the signal

traveled, which gives us the distance to the object. We can also measure the velocity, or,

to be more precise, the rate with which the distance changes. It is, however, very difficult

to separate the signals from different fragments located at the same distance.

As a result, what we observe is a 1-D signal s(t), where each value s(t) represents the

intensity of the reflection from all the fragments located at distance c·t from the radar – i.e.,

from the 2-D slice corresponding to this distance. Based on these slices, we must distinguish

between the body at the core of the explosion and the (slowly expanding) fragments.

We will describe a new method of identifying a core based on the slice observations.

5.3.2 New Result: A New Method for Solving the Problem

Repeated signal measurements at several different moments of time Tk. At first

glance, there may seem to be no difference between the signals reflected by the fragments

and the signal reflected by the core. However, in the process of an explosion, fragments

usually start rotating fast, at random rotation frequencies, with random phases. As a

result, the signals reflected from the fragments oscillate, while the signal from the original

core practically does not change.

As a result, the reflected signals change with time. Therefore, it makes sense to measure

the signal s(t) not just once, but at several consequent moments of time, i.e., to consider
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the signals s1(t), . . . , sN(t) measured at moments T1 < . . . < TN , and use the difference

between the dynamic character of the fragments and the static character of the core to

identify the core.

Relating measurements performed at different moments of time Tk 6= Tl: the

corresponding t-scales are linearly related. In order to compare signals measured

at different moments of time Tk 6= Tl, we must identify the layers measured at different

moments of time.

Let T0 be the moment of explosion, and let x0 be the initial distance between the radar

and the core (and the fragments) at that initial moment of time T0. We assume that our

coordinate system has the radar as its origin, and that the x axis is the axis in the direction

of the analyzed “cloud”. For each fragment i, let v(i)
x be the x-component of the velocity

of i-th fragment (velocity relative to the radar). Hence, at moment Tk, the x-coordinate

of i-th fragment in our coordinate system – i.e., its distance from the radar – is equal to

x(i)(Tk) = x0 + v(i)
x · (Tk − T0). Therefore, the radar signal reflected from this fragment

corresponds to the time

t
(i)
k =

x
(i)
k

c
=

x0

c
+ v(i)

x · Tk − T0

c
. (5.3.1)

Similarly, when we repeat the radar measurement at time Tl 6= Tk, the radar signal reflected

from the i-th fragment corresponds to the time

t
(i)
l =

x0

c
+ v(i)

x · Tl − T0

c
. (5.3.2)

What is the relation between the corresponding times t
(i)
k and t

(i)
l ? From the equation

(5.3.1), we conclude that

v(i)
x =

c · t(i)k − x0

Tk − T0

.

Substituting this expression into the formula (5.3.2), we conclude that

t
(i)
l =

x0

c
+

c · t(i)k − x0

Tk − T0

· Tl − T0

c
= akl · t(i)k + bkl, (5.3.3)
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where

akl =
Tl − T0

Tk − T0

> 0

and

bkl =
x0

c
− x0

Tk − T0

· Tl − T0

c

do not depend on i.

In other words, the t-scales of the signals sk(t) and sl(t) are related by a linear depen-

dence tk → tl = akl · tk + bkl.

How can we experimentally find the coefficients of this linear relation? At each

moment of time Tk, we get the observed signal sk(t). Let tk be the smallest time at which

we get some reflection from the fragments cloud, and let tk be the largest time at which

we observe the radar reflection from this cloud. This means that there is a fragment i for

which t
(i)
k = tk, there is a fragment j for which t

(j)
k = tk, and for every other fragment f ,

the corresponding moment of time is in between tk and tk: t
(f)
k ∈ [tk, tk].

As we have mentioned, for every other observation Tl, the relation between the cor-

responding times t
(i)
k and t

(i)
l is linear, with a positive coefficient akl. Since akl > 0, the

corresponding linear functions t → akl · t + bkl is monotonically increasing. Thus, the

value tl is the smallest for the same fragment i for which tk was the smallest. Hence,

tl = t
(i)
l = akl · t(i)k + bkl, i.e.,

tl = akl · tk + bkl. (5.3.4)

Similarly,

tl = akl · tk + bkl. (5.3.5)

The values tk, tk, tl, and tl are directly observable. Thus, by solving the system of two

linear equations (5.3.4) and (5.3.5) with 2 unknowns, we get explicit expressions for akl and

bkl in terms of these observable values:

akl =
tl − tl
tk − tk

; bkl =
tk · tl − tk · tl

tk − tk
.
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How Can We Transform Signals sk(t) and sl(t) to the Same Scale? Our main

idea is that after we measure the fragments cloud at two different moments of time Tk and

Tl, we should compare the values sk(t) and sl(t) corresponding to the same fragments.

We know that for each moment of time t, the value sk(t) describes the same fragment(s)

as the value sl(t
′), where t′ = akl · t + bkl. We also know how to experimentally determine

the coefficients akl and bkl. So, to make the desired comparison easier, it is reasonable to

“re-scale” the signals to the same t-scale, so that the compared values correspond to exactly

the same value t. In other words, we would like to generate a re-scaled signal

s̃l(t)
def
= sl(akl · t + bkl). (5.3.6)

If the measurements were absolutely accurate, i.e., if we had the values sk(t) corresponding

to each individual time t, then such a re-scaling would be easy: we could simply explicitly

use the formula (5.3.6).

In real life, however, each value sl(t) corresponds not just to a single time t, but to the

entire “bin” of values, from some value t to the value t + ∆t, where ∆t is the accuracy

with which the radar can measure the time t (in other words, ∆t = ∆x/c, where ∆x is

the accuracy with which the radar can measure the distance). In other words, what we

actually observe is a sequence of values . . . , s((i−1) ·∆t), s(i ·∆t), s((i+1) ·∆), . . . Crudely

speaking, each observed value s(i ·∆t) represent the overall intensity of all the fragments

for which the actual reflection time t = x/c is in the interval

Ii
def
= [(i− 0.5) ·∆t, (i + 0.5) ·∆t]. (5.3.7)

Because of this discreteness, we cannot directly use the formula (5.3.6) to match the signals:

Indeed, from the moment Tk to the moment Tl, the cloud slightly expands. At the moment

Tk, the value sk(i ·∆t) is the overall intensity of all the fragments for which tk belongs to

the interval (5.3.6) of width ∆t. At moment Tl, the times tl = akl · tk + bkl corresponding

to these same fragments occupy a wider interval – of width akl · ∆t > ∆t. Thus, these

fragments are no longer in the same bin, they may be in different bins.
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How can we match the values? A natural idea is to use linear extrapolation. In other

words, to estimate s̃(t) for t = i · ∆t, we apply the linear transformation akl · t + bkl to

the interval Ii. The resulting interval Ĩi consists of several parts from different intervals Ij.

As s̃l(t), we take a linear combination of the corresponding values sl(j ·∆t), with weights

proportional to the relative length |Ĩi ∩ Ij|/∆t of the intersection Ĩi ∩ Ij:

s̃l(i ·∆t)
def
=

∑

j

|Ĩi ∩ Ij|
∆t

· sl(j ·∆t).

For example, if Ĩi consists of the entire interval Ij, 0.1 of Ij−1, and 0.05 of Ii−1, then s̃l(i·∆t)

is equal to:

0.1 · sl((i− 1) ·∆t) + sl(i ·∆t) + 0.05 · sl((i + 1) ·∆t).

In the following text, we will assume that the signals si(t) have already been thus

rescaled.

Algorithm: main idea. Each layer (“bin”) contains several fragments. These fragments

oscillate with random (uncorrelated) frequencies and phases; the overall signal x(t) is the

sum of the reflections from all these fragments. Due to the central limit theorem, the

resulting overall signal x(t) is approximately normally distributed with some mean E(t)

and variance V (t).

If a layer only contains fragments, then, due to the independence assumption, E(t) ≈
n(t) · E and V (t) ≈ n(t) · V , where n(t) is the (unknown) number of fragment in layer t,

and E and V are the mean and variance corresponding to each fragment. Therefore, for

each such layer, E(t) ≈ (E/V ) · V (t).

For a layer that also contains the core, we have E(t) ≈ Ec+N(t)·E and V (t) ≈ N(t)·V ,

where Ec is the intensity of the core (since the core is supposed to be not rotating fast, its

signal does not change with time, so the corresponding variance is negligible). Thus, for

this layer, E(t) ≈ Ec + (E/V ) · V (t). So, for the core, E(t)/V (t) À E/V .

Therefore, crudely speaking, our best guess for the core location is the point t for which

the ratio E(t)/V (t) is the largest.
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This is, of course, a very naive description of the idea. Let us see how this idea can be

described in more adequate DSP terms.

Towards a statistically valid algorithm.

1◦. What are motivations for the main distribution formula? The intensity Ii(t) of each

fragment i depends on time. Let ai = lim
T→∞

T−1 ·
T∫
0

Ii(t) dt denote the average intensity over

time, and let

bi = lim
T→∞

T−1 ·
T∫

0

(Ii(t)− ai)
2 dt.

In the ensemble of fragments, let a0 be the mean of ai, let A0 be the variance of ai,

let b0 be the mean of bi, and let B0 be the mean of ai. Then, according to the main idea,

we can assume that E(t) is normally distributed with the mean n(t) · a0 and the variance

n(t) ·A0, and V (t) is normally distributed with the mean n(t) ·b0 and the variance n(t) ·B0.

We assumed the layers to be independent. As a result, we arrive at the following formula

for the resulting probability distribution:

ρ =
N∏

t=1

1√
2π · n(t) · A0

· exp

(
−(E(t)− n(t) · a0)

2

2n(t) · A0

)
×

N∏

t=1

1√
2π · n(t) ·B0

· exp

(
−(V (t)− n(t) · b0)

2

2n(t) ·B0

)
,

with the proviso that for the layer t = t0 containing the core, we have E(t)−Ec − n(t) · a0

instead of E(t)− n(t) · a0.

Based on the experimental data E(t) and V (t), we must find estimates for the parame-

ters a0, b0, A0, B0, n(t), t0, and Ec – and what we are really interested in is t0. In accordance

with the Maximum Likelihood Method (MLM), we must find the values of these parame-

ters for which ρ → max. As usual in statistics, it is convenient to replace the problem of

maximizing ρ with a mathematically equivalent problem of minimizing a simpler function

ψ
def
= − ln(ρ), i.e., in our case,

ψ =
N∑

t=1

(E(t)− n(t) · a0)
2

2n(t) · A0

+
N∑

t=1

(V (t)− n(t) · b0)
2

2n(t) ·B0

+

96



www.manaraa.com

N∑

t=1

ln(n(t)) +
N

2
· log(A0) +

N

2
· log(B0). (5.3.8)

2◦. Let us start with the simplest case when we know the values of the parameters a0, b0,

A0, and B0 that describe the distribution of fragments. In this case, differentiating by n(t)

and equating the derivative to 0, we conclude that

− 1

2n(t)2

(
E(t)2

A0

+
V (t)2

B0

)
+

1

2

(
a2

0

A0

+
b2
0

B0

)
+

1

n(t)
= 0.

The first two terms are approximately independent on the number of fragments n(t), the

third term 1/n(t) is much smaller (since we have many fragments). So, we can safely ignore

the their term and conclude that n(t) = ‖vt‖/‖v0‖, where we denoted

vt
def
=

(
E(t)√

A0

,
V (t)√

B0

)
; v0

def
=

(
a0√
A0

,
b0√
B0

)
,

and ‖(va, vb)‖ =
√

v2
a + v2

b denotes the length of the vector v = (va, vb). Substituting this

expression for n(t) into the corresponding part of (5.3.8), i.e., into

ψ(t)
def
=

(E(t)− n(t) · a0)
2

2n(t) · A0

+
(V (t)− n(t) · b0)

2

2n(t) ·B0

+

ln(n(t)) =
1

2n(t)
·
(

E(t)2

A0

+
V (t)2

B0

)
−

(
E(t) · a0

A0

+
V (t) · a0

A0

)
+

n(t)

2
·
(

a2
0

A0

+
b2
0

B0

)
+ ln(n(t)),

we conclude that ψ(t) ≈ ψ0(t), where

ψ0(t)
def
= ‖vt‖ · ‖v0‖ − vt · v0, (5.3.9)

and vt · v0 denotes the dot (scalar) product. (≈ because we use the approximate value for

n(t).)

For t = t0, due to the presence of an additional variable Ec, we get ψ(t0) ≈ 0. Thus,

ψ = (N/2) · (log(A0) + log(B0)) +
N∑

t=1

ψ0(t)− ψ0(t0).

Thus, ψ is the smallest if and only if ψ(t0) is the largest. Therefore, we arrive at the

following algorithm for locating the core:
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• First, we re-scale the signals sk(t) into s̃k(t) so that the same value t corresponds to

the same fragments.

• For each t, we compute the sample average E(t) and the sample variance V (t) of the

values s̃k(t).

• For each t, we compute vt and ψ0(t), and find t0 for which ψ0(t0) = m
def
= max

t
ψ0(t).

How reliable is this estimate? We are interested in the value of a single variable t0,

and we know that for one variable, 95% of the values are within 2σ from the mean, and

99.9% are within 3σ. In terms of ψ = ln(ρ), the mean corresponds to its minimum, the 2σ

deviation means difference (2σ)2/(2σ2) = 2 from the minimum, and 3σ deviation means

the difference of (3σ)2/(2σ2) = 4.5 from the minimum. Thus, with reliability 95%, we

conclude that the core is among those t for which ψ0(t) ≥ m− 2, and that with reliability

99.9%, the core is among those t for which ψ0(t) ≥ m− 4.5.

3◦. What about general case? The value (5.3.8) does not change if we re-scale all the

parameters: n(t) → K · n(t), a0 → a0/K, b0 → b0/K, A0 → A0/K, and B0 → B0/K, for

any K > 0. W.l.o.g., we can therefore assume that a0 = 1.

Differentiating (5.3.8) by a0, we conclude that a0 = (
∑

E(t))/(
∑

n(t)). Similarly, b0 =

(
∑

V (t))/(
∑

n(t)). Since a0 = 1, we thus get b0 = (
∑

V (t))/(
∑

E(t)). Differentiating by

A0, we conclude that

A0 =
1

N

∑

t

(E(t)− n(t) · a0)
2

n(t)
=

1

N

(∑

t

E(t)2

n(t)
−∑

t

E(t)

)
(5.3.10)

and similarly,

B0 =
1

N

(∑

t

V (t)2

n(t)
− b0 ·

∑

t

V (t)

)
. (5.3.11)

If we denote λ
def
= A0/B0, then the above formula for n(t) takes the form n(t)2 = (E(t)2 +

λ · V 2(t))/(1 + λ · b2
0). Substituting this expression into (5.3.10) and (5.3.11) and using the
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fact that A0 = λ ·B0, we conclude that

∑

t

E(t)2

√
E(t)2 + λ · V (t)2

·
√

1 + λ · b2
0 −

∑

t

E(t) =

∑

t

λ · V (t)2

√
E(t)2 + λ · V (t)2

·
√

1 + λ · b2
0 − b0 ·

(∑

t

V (t)

)

with the only unknown λ. After we find λ from this equation, we can thus find A0, B0,

and hence, the desired t0.

To test our technique, we simulated an explosion with randomly distributed fragments.

On this simulation, the above algorithm does detect the core.

Possibility of parallelization. In the above algorithms, processing values correspond-

ing to bin i uses only measurement only from this bin and from the neighboring bins.

Therefore, if we have several processors working in parallel (see, e.g., [87]), we can speed

up the computations by having each processor process a section of bins. For example, for 2

processors, the first can handle bins 1 to N/2+n, and the second all the bins from N/2−n

to N , where n is the number of neighboring bins that we need to take into consideration.

Multiple explosions: case of a very accurate radar. Sometimes, the observed frag-

ments cloud comes not from a single explosion, but from several consequent explosions.

How can we then determine the core?

Let us show that when the radar is accurate enough, so that we can distinguish between

individual fragments, the problem of determining the core becomes even easier than in the

case of a single explosion.

First, we observe that if the radar is that accurate, then, by making observations at

very close moments of time T1, T2, etc., we can trace individual fragments. Indeed, at

the initial moment T1, we identify fragments by the times t
(1)
1 < t

(2)
1 < . . . at which the

corresponding signal s1(t) is non-zero. At the next moment T2, we can find the times t2,

t′2, . . . corresponding to the fragments as the times t for which s2(t) 6= 0. When the time
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difference T2 − T1 is so small that the relative motion of a fragment is smaller than the

distance between different fragments, we can identify, for each fragment i, the corresponding

time t
(i)
2 as the closest to t

(i)
1 among all observed values t2, t′2, . . .

For a single explosion, a linear formula (5.3.3) relates t
(i)
2 and t

(i)
1 ; the corresponding

slope akl depends on the moment T0 of the explosion. If two explosions occurred at moments

T0 and T ′
0, we get similar linear formulas for the fragments of each explosion, with two slopes

akl 6= a′kl. Thus, by plotting the dependence of t
(i)
2 on t

(i)
1 , we will get two straight lines

with different slopes. The core belongs to both families of fragments. Thus, the core can be

determined as the fragment i0 that lies at the intersection of the two corresponding straight

lines.

For two explosions, we can determine both lines and easily find the intersection. For

numerous explosions, we will have many straight lines, and finding all of them may be

computationally difficult; so, we need a different idea.

The dependence of ak on T0 is monotonic, so in such situations, the 2-D points t(i)
def
=

(t
(i)
1 , t

(i)
2 ) occupy a zone between two straight lines with different slope a < a corresponding

to the first and the last explosions; geometrically, it is a 2-D cone with the core’s value t(i0)

as the vertex. Since we have numerous explosions, we can conclude that the corresponding

pairs fill the entire cone.

Let us show that the core can be determined as the only value i for which

max
j: t

(j)
1 <t

(i)
1

t
(2)
j < min

j: t
(j)
1 >t

(i)
1

t
(2)
j . (5.3.12)

Let us first consider the case i = i0. For each of the corresponding straight lines, the

dependence of t
(i)
2 on t

(i)
1 is monotonically increasing; since the core i0 belongs to all the

lines, we can therefore conclude that if t
(j)
1 < t

(i0)
1 , then we have t

(j)
2 < t

(i0)
2 , and if t

(j)
1 > t

(i0)
1 ,

then we have t
(j)
2 > t

(i0)
2 – which implies (5.3.12).

If t
(i)
1 > t

(i0)
1 , then the maximum in the left side of the formula (5.3.12) corresponds to

the largest possible slope akl and is therefore equal to t
(i0)
2 + akl · (t(i)1 − t

(i0)
1 ). On the other

hand, the minimum in the right side of the formula (5.3.12) corresponds to the smallest

100



www.manaraa.com

possible slope slope akl and is therefore equal to t
(i0)
2 + akl · (t(i)1 − t

(i0)
1 ) – which is clearly

smaller than the maximum in the left side of (5.3.12).

Similarly, (5.3.12) cannot occur for t
(i)
i < t

(i0)
1 .

5.4 Image Processing

We analyze the problem of inverse half-toning. This problem is a particular case of a class of

difficult-to-solve problems: inverse problems for reconstructing piece-wise smooth images.

We show that this general problem is NP-hard. We also propose a new idea for solving

problems of this type, including the inverse halftoning problem.

5.4.1 Introduction

Need for halftoning. Inside the computer, a gray-scale image is represented by assign-

ing, to every pixel (n1, n2), the intensity f(n1, n2) of the color at this pixel. Usually, 8 bits

are used to store the intensity, so we have 28 = 256 possible intensity levels for each pixel.

For color images, we must represent the intensity of each color component.

A laser printer cannot print the points of different intensity; at any pixel, it either prints

a black (or a colored) dot, or it does not print anything at all. Therefore, when we print

an image, we must first transform it into the form b(n1, n2) in which at every pixel (n1, n2),

we only have 0 or 1: 0 if we do not print a black dot at this location, and 1 if we do. This

transformation from the original continuous image to the two-level (“halftone”) image is

called halftoning.

Crudely speaking, the level of intensity at a pixel is represented by the relative frequency

of black spots around it:

• if the original image was black, then all the neighboring pixels are black;

• if the original image was white, then none the neighboring pixels are black, they are

all white;
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• any level between absolute black and absolute white means that some pixels in the

neighborhood are black and some are white; the larger the intensity, the more black

pixels there is.

Halftoning techniques: a brief reminder. There exist many halftoning algorithms;

see, e.g., [207]. One of the most widely used halftoning algorithms is the error diffusion

algorithm [207], in which we start with the original image u(n1, n2) := f(n1, n2) and se-

quentially update the processed image u(n1, n2) and quantize the processed value u(n1, n2)

into the halftone image b(n1, n2) = Q(u(n1, n2)), where:

• Q(u) = 0 for u < 0.5 and

• Q(u) = 1 for u ≥ 0.5.

Once the pixel is quantized, the quantization error e(n1, n2)
def
= b(n1, n2)−u(n1, n2) is spread

out (“diffused”) to the values u(n1, n2) at neighboring pixels, so that the processed value

u(n1, n2) eventually becomes equal to

u(n1, n2) = f(n1, n2)−
∑

m1,m2

h(m1,m2) · e(n1 −m1, n2 −m2).

Need for reverse halftoning. Visually, the halftone image printed on a high-quality

laser printer looks practically identical to the original gray-scale image that we can see on

the computer screen. So, visually, once we have a halftone image b(n1, n2), we can tell which

original multi-level image f(n1, n2) it came from. However, this intuitive understanding is

difficult to describe in precise terms.

Once we have a printed image, we can digitally scan it and get the halftone values

b(n1, n2) from this printed page. From these halftone values, we would like to reconstruct

the original image. Our eyes can do it, but it is not so easy to describe this ability in

algorithmic terms.

The need for such a representation also comes from the need to manipulate the original

image, e.g., rotate it or zoom on it. These operations are easy to perform on the original
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image, but it is not clear how to perform them on a halftone image. So, if we want to go

from a printed image to a printed zoomed and/or rotated image, we can do it in this way:

• first, we use the halftone image b(n1, n2) to reconstruct the original image f(n1, n2);

• then, we apply the appropriate zoom and/or rotation operations to the reconstructed

image f(n1, n2), resulting in a transformed image f ∗(n1, n2);

• finally, we halftone the transformed image f ∗(n1, n2), and print the resulting halftone

image b∗(n1, n2).

In all these cases, we must reverse the halftoning procedure.

Halftoning is an ill-posed problem: a reminder. Our objective is to reverse the

halftoning operation. By definition, halftoning transforms the original gray-scale image

in which we stored at least 8 bits per pixel, into a black-and-white image in which we

store only one bit per pixel. Thus, halftoning loses information and is, therefore, a lossy

compression.

Hence, there may be several different images that lead to the same halftoned image.

Existing inverse halftoning techniques: POCS. There exist several different tech-

niques for inverse halftoning:

One class of such techniques is based on the iterative projection onto convex set (POCS);

see, e.g., [81, 132]. Crudely speaking, the main idea behind these methods is that each value

b(n1, n2) of a halftone image represents a constraint on the original image f(n1, n2). In most

halftoning methods like error diffusion halftoning, the relation between the original image

f(n2, n2) and the halftone image b(n1, n2) is described by convex transformations, so for

each value b(n1, n2), the set of all the images that lead to this particular value is a convex

set.

Thus, the set of all the images f(n1, n2) which are consistent with the halftone image

b(n1, n2) is also a convex set. Among these images, we want to find an image that satisfies
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certain reasonable properties, e.g., an image that is sufficiently smooth. For many proper-

ties, the set S of such images is convex. We would like to find, among all the images from

the class S, the closest to b(n1, n2) (e.g., in L2 metric) that is consistent with the halftone

image b(n1, n2).

From the geometric viewpoint, we have a point b(n1, n2) in the function space, and we

want to find the closest element to this point in the convex set that is the intersection of

the set S of all desirable images and the convex sets formed by all the images that lead to

this very halftone image. It is known that to get this projection, we can:

• project our point onto the first of the intersected convex sets, then

• project the resulting point onto the second,

• etc.,

iterating the procedure if necessary. In terms of constraint propagation, we need to satisfy

several constraints, so we:

• first minimally modify the original halftone image so that it satisfies the first con-

straint,

• then minimally modify the modification so that it satisfies the second constraint,

• etc.

The resulting projection on convex sets method indeed leads to a good quality inverse

halftoning.

Existing inverse halftoning techniques: wavelet techniques. Another class of tech-

niques for inverse halftoning uses wavelet transform, a techniques that, as the experience of

JPEG2000 has shown (see, e.g., [198]), best captures the visual quality of images uncom-

pressed after a lossy compression (and halftoning is, as we have mentioned, an example of

lossy compression).
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Wavelet-based techniques for inverse halftoning are presented, e.g., in [132]. In accor-

dance with the JPEG2000 experience, wavelet-based inverse halftoning techniques lead to

visually the best reconstruction among all known inverse halftoning methods.

Existing inverse halftoning techniques: fast techniques based on adaptive fil-

tering. As we have just mentioned, the wavelet-based inverse halftoning techniques lead

to visually the best reconstruction among all known inverse halftoning methods. The only

reason why these methods are not universally used is that these methods take a lot of

computations.

In view of this fact, researchers have been trying to design faster inverse halftoning

techniques that would still lead to similar quality image reconstruction.

The main idea behind such techniques is that, as we have mentioned, the intensity of

the original image f(n1, n2) can be reconstructed from the density of black pixels in the

neighborhood of a given pixel (n1, n2). In engineering terms, this means that the original

image f(n1, n2) can be obtained from the halftone image b(n1, n2) by low-pass filtering.

If the image consists of a single object, with intensity smoothly changing from pixel to

pixel, then we can indeed apply a low-pass filter to the half-tone image and get a reasonable

reconstruction. However, in real life, images have edges. When applied to an image with

edges, a low-pass filter correctly reconstructs the intensity within each smooth zone, but

blurs the edge.

A natural way to avoid this blurring is to detect the edges and to apply different filters

(with different spatial radius) at different parts of the image, so that:

• a filter applied inside each zone would have a larger radius and thus, have a greater

smoothing effect, while

• a filter applied closer to the edge would have a smaller radius, and thus, would

preserved the edge.

Of course, ideally, instead of just two levels inside-edge, we should have a filter radius
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adjusted to the estimated gradient of intensity at the given pixel (n1, n2).

This idea has been successfully implemented in inverse halftoning; see, e.g., [98]. The

resulting method is much faster than the wavelet-based reconstruction, while the visual

quality of the reconstructed images is almost as good as for the wavelet-based reconstruc-

tion.

Inverse halftoning: remaining problem. The remaining problem is that the existing

methods are still not optimal. They are optimized with respect to selection of parameters,

but the consensus of researchers is that there is still room for improvement, especially when

we are looking for methods of low computational intensity that can be easily implemented

within the existing printing devices.

What we are planning to do? In this dissertation, we will show that the problem

of inverse half-toning is a particular case of a class of difficult-to-solve problems: inverse

problems for reconstructing piece-wise smooth images. We show that this general problem

is NP-hard. We also propose a new idea for solving problems of this type, including the

inverse halftoning problem.

5.4.2 Inverse Halftoning is a Particular Case of a General Class

of Inverse Problems of Reconstructing Piecewise Smooth

Images

Inverse halftoning is an ill-posed problem. We have mentioned that the inverse

halftoning problem is ill-posed in the sense that, from the purely mathematical viewpoint,

there are many different images that are consistent with the same observed data – in this

case, with the given halftone image b(n1, n2).

Most inverse problems in science and engineering are ill-posed. The above ill-

posedness of the inverse halftoning problem is a common feature in applications: most
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inverse problems in science and engineering are ill-posed; see, e.g., [199].

Smoothness: traditional approach to solving ill-posed inverse problem. A typ-

ical way to solve an inverse problem is to find a natural physically meaningful property

of actual solution, and use this a priori information to select a single most physically

meaningful solution among many mathematically possible ones. This process is called

regularization.

Typically, in inverse problems, this natural property is smoothness. Smoothness can be

naturally described in precise mathematical terms. For example, when we reconstruct a 1-

D signal x(t), then the degree of smoothness can be defined as follows. At a given moment

of time t, the larger the absolute value |x′(t)| of the derivative x′(t), the less smooth the

signal is. Thus, at a given time t, the value |x′(t)| is a natural degree of the signal’s non-

smoothness. Overall, a natural degree of non-smoothness can be defined as a mean square

of these degrees corresponding to different moments t, i.e., as J
def
=

∫
(x′(t))2 dt.

Most regularization techniques try to find, among many signals that are consistent with

given observations, the smoothest signal, i.e., the signal with the smallest possible value of

the degree of non-smoothness J .

Smoothness: discrete case. In real life, we only have the values x(t1), x(t2), . . . , of

the signal x(t) at discrete moment of time t1, t2 = t1 + ∆t, . . . , ti+1 = ti + ∆t, . . . Based on

this discrete data, we can approximate the derivative x′(t) as a difference
x(ti+1)− x(ti)

∆t
,

so minimizing the integral J is equivalent to minimizing the corresponding integral sum

Jdiscr
def
=

∑
i
(x(ti+1)− x(ti))

2.

Smoothness: 2-D case. For a 2-D image f(n1, n2), similarly, a natural assumption is

that this image is smooth. Similarly to the 1-D case, a natural way to describe the degree

of smoothness of a given image is to use the integral sum

J
def
=

∑
n1,n2

[(f(n1 + 1, n2)− f(n1, n2))
2 + (f(n1, n2 + 1)− f(n1, n2))

2].
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Alternatively, we can describe this criterion as the sum of the squares of the differences

in intensity between all possible pairs (p, p′) of neighboring pixels p = (n1, n2) and p′ =

(n′1, n
′
2):

J =
∑

p,p′ are neighbors
(f(p)− f(p′))2.

Smoothness makes problems computationally solvable. A practically useful prop-

erty of the above degrees of non-smoothness J is that the expression J is a convex function

of the signal x(ti) or f(n1, n2). Thus, if the conditions describing the fact that the unknown

images is consistent with the observations is also described by linear or, more generally,

smooth inequalities, then the problem of finding the regularized solution can be reformu-

lated as a problem of minimizing a convex function J on the convex set.

Similarly, if we fix the degree of non-smoothness and look, among all the solutions with

a given degree of non-smoothness, for the one that is the closest to the original approximate

solution, we also have a problem of minimizing a convex function (distance) on the convex

set (of all functions that are consistent with the observations and have the desired degree

of smoothness).

It is known that, in general, the problems of minimizing convex functions over convex

domains are algorithmically solvable (see, e.g., [201]), and smoothness-based regularization

has indeed been efficiently implemented; see, e.g., [199].

For image reconstruction, we only have piecewise smoothness. We have already

mentioned that in images, we have a smooth change from pixel to pixel only within an

object; between objects, we may have a sharp edge in which there is no smoothness at all.

Many other inverse problems can also be characterized by piecewise smoothness. For

example, in the inverse problem of geophysics, we use the results of ultrasound waves

passing through the earth to find out how the density change with depth and location. In

geophysics, we have clear layers of different rocks with sharp edges between different layers,

so we also face an inverse problem with only piecewise smoothness; see, e.g., [171].

108



www.manaraa.com

Traditional smoothness measures are not adequate for piecewise smoothness.

In the piecewise smooth case, the above measure of non-smoothness is not applicable,

because it would include neighboring pixels on the different sides of the edge.

Appropriate smoothness measures for piecewise smoothness case. To avoid the

above problem, we need to only take into account the pairs of neighboring pixels that

belong to the same zone, i.e., consider the sum

J(Z) =
∑

p,p′ are neighbors in the same zone
(f(p)− f(p′))2,

where Z denotes the information about the zones. This measure makes computational

sense only if we know beforehand where the zones are – i.e., where is the border between

the two zones.

However, in real life, finding the edge is a part of the problem. In this case, we can use

the same smoothness criterion not only to reconstruct the original image, but also to find

the edge location. Specifically, we want to look for the zone distribution and for the zone

location for which the above criterion J takes the smallest possible value.

In terms of an image, we fix the number of zones, and we characterize the non-

smoothness of an image by a criterion

J∗ = min
all possible divisions Z into zones

J(Z).

The resulting problem is no longer convex. The resulting functional is no longer

convex, because the division into zones is a discrete problem. It is known that non-convex

problems are, in general, more computationally difficult than the corresponding convex

ones (see, e.g., [95]), and adding discrete variables makes the problems even more compu-

tationally difficult; see, e.g., [170].
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5.4.3 New Complexity Result: Complexity of Inverse Problems

of Reconstructing Piecewise Smooth Images

In this section, we show that in general, the inverse problem for piecewise smooth case is

computationally intractable (NP-hard) even when the relation expressing the consistency

between the measured results and the desired image is linear.

This proof will follow the proof of NP-hardness of different image and signal processing

problems described in our previous publications [110].

Let us prove that in general, the inverse problem for piecewise smooth case is compu-

tationally intractable (NP-hard).

Main idea of the proof: reduction to a subset problem. To prove NP-hardness of

our problem, we will reduce a known NP-hard problem to the problem whose NP-hardness

we try to prove: namely, to the inverse problem for piecewise smooth images.

Specifically, we will reduce, to our problem, the following subset sum problem [110, 170]

that is known to be NP-hard:

• Given:

• m positive integers s1, . . . , sm and

• an integer s > 0,

• check whether it is possible to find a subset of this set of integers whose sum is equal

to exactly s.

For each i, we can take xi = 0 if we do not include the i-th integer in the subset, and

xi = 1 if we do. Then the subset problem takes the following form: check whether there

exist values xi ∈ {0, 1} for which
∑

si · xi = s.

We will reduce each instance of this problem to the corresponding piecewise smooth

inverse problem.
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Reduction to a subset problem: details. Let us consider the following problem. We

want to reconstruct an m × m image f(n1, n2). Let d = bm/2c. We want a piecewise

smooth image f(n1, n2) that consists of two zones.

The following linear constraints describe the consistency between the observations and

the desired image:

• f(n1, n2) = 1 for n2 > d;

• m∑
i=1

si · f(i, d) = s; and

• f(n1, n2) = 0 for n2 < d.

The problem that we consider is to find the solution with the smallest possible value of

smoothness J∗ among all the images that satisfy these linear constraints.

Let us show that the minimum of J∗ is 0 if and only if the original instance of the subset

problem has a solution. Indeed, if J∗ is 0, this means that all the values within each zone

must be the same. Since we have values 1 for n2 > d and values 0 for n2 < d, we must

therefore have every value to be equal either to 0 or to 1. Thus, if we have such a solution,

the corresponding values f(i, d) ∈ {0, 1} provide the solution to the original subset problem
∑

si · xi = s.

Vice versa, if the selected instance of the original subset problem has a solution xi, then

we can take f(i, d) = xi and get the solution of the inverse problem for which the degree

of non-smoothness is exactly 0.

So, if we can solve the inverse problem for piecewise smooth images, we will thus be

able to solve the subset sum problem.

This reduction proves that the inverse problem for piecewise smooth images is indeed

NP-hard.
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5.4.4 Towards Possible Use of Interval Computations in Inverse

Halftoning

Every halftoning algorithm includes a thresholding step. For every halftoning

algorithm, including the error diffusion algorithm, there is a thresholding step where we

replace the original continuous value with the quantized value. Usually, to decide whether

the halftoned value b(n1, n2) at a pixel (n1, n2) will be 0 (white pixel) or 1 (black pixel),

we do some processing on the original image f(n1, n2), and then apply thresholding to the

resulting value u(n1, n2). For example, in the error diffusion halftoning, we compute the

auxiliary value u(n1, n2), and then compute the halftone as b(n1, n2) = Q(u(n1, n2)), where:

• Q(u) = 0 if u < 0.5 and

• Q(u) = 1 if u ≥ 0.5.

New idea: instead of selecting a single original image, produce the whole range

of possible original images. We have already mentioned that halftoning loses informa-

tion and is, therefore, a lossy compression. Hence, there may be several different images

that lead to the same halftoned image.

In the existing methods, we reverse the halftoning procedure by selecting one of such

images. However, it may be beneficial to present not just a single possible original image,

but the whole range of images that could lead to the given halftoned image.

For example, in the above halftoning procedure, if we know that b(n1, n2) = 0, this

means that the signal u(n1, n2) could have any value from the interval (0.0, 0.5), while if

we know that b(n1, n2) = 1, this means that the signal u(n1, n2) could have any value from

the interval [0.5, 1.0).

Result: interval-valued image. If we follow this idea, then instead of the image

in which the intensity f(n1, n2) at every pixel has an exact value, we come up with

112



www.manaraa.com

an “interval-valued” image in which, at each pixel (n1, n2), we only know the interval

[f(n1, n2), f(n1, n2)] of possible values of intensity.

A similar idea of interval-valued quantities has been successfully used in science

and engineering. The idea of using interval-valued quantities to represent uncertainty

in engineering and scientific applications is not new: it has been known since the 1950s

when R. E. Moore from Lockheed used it to analyze trajectories of intercontinental missiles

and spaceship under interval uncertainty; see, e.g., [136]. Since then, interval computations

have been widely applied in different engineering problems; see, e.g., [86, 88, 94, 145].

Interval techniques have been actively used in robust control [88], and in image and data

processing [28, 102]. We believe that interval techniques can be applied to the inversion of

halftoning as well.

Interval methods may provide one more explanation for the efficiency of wavelets.

In particular, there exists an interval-based justification of wavelet techniques in image pro-

cessing [28].

This explanation makes us believe that interval methods may be able to explain why

wavelet-based inverse halftoning techniques lead, at present, to the most accurate (albeit

not the fastest) inverse halftoning.

5.4.5 New Algorithm for Interval-Motivated Inverse Halftoning

As we have mentioned, low-pass filtering of the halftone (binary) image b(n1, n2) provides a

good first approximation `(n1, n2) to the original image. However, the resulting lowpass fil-

tered image is usually still different from the original image f(n1, n2): `(n1, n2) 6= f(n1, n2).

One reason for this difference is that, as we have mentioned, halftoning is a lossy

compression. Due to this lossiness, several different images f(n1, n2) lead to the same

halftone image b(n1, n2), so we cannot reconstruct the original image exactly.

However, there is another reason why `(n1, n2) 6= f(n1, n2): namely, when we apply
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the original halftoning to the result `(n1, n2) of applying the low-pass filter to the halftone

image b(n1, n2), we do not exactly get back the same halftone image. In this sense, the

lowpass filtered image is not the true inverse to the halftoning procedure.

It is therefore desirable to modify the lowpass filtered image so that the modified image

will be inverse to halftoning, in the sense that if we apply the halftoning procedure to the

modified image g(n1, n2), we will get exactly the halftone image b(n1, n2).

An interval consistency algorithm: description. Let us show how we can use inter-

val ideas to design a desired image modification procedure. We will apply these ideas to

the most widely used halftoning algorithm – error diffusion. In error diffusion, in order to

process a pixel (n1, n2), we must have the results of halftoning of pixels (n1−m1, n2−m2)

with smaller values of the coordinates. Thus, in this halftoning procedure, we start process-

ing the image with the pixel (1,1), and then we proceed with pixels (n1, n2) with increasing

values of n1 and n2.

To invert the halftone image, we similarly start with the pixel (1,1). The result b(1, 1)

of halftoning this pixel depends only on the intensity f(n1, n2) at this pixel: b(n1, n2) = 0

for f(n1, n2) < 0.5 and b(n1, n2) = 1 for f(n1, n2) ≥ 0.5. So, to check whether halftoning of

`(n1, n2) produces the correct value of b(1, 1), it is sufficient to apply the above thresholding

to the value `(1, 1). If the result of this thresholding coincides with b(1, 1), we keep the

lowpass filtered value `(1, 1), i.e., we set g(1, 1) = `(1, 1).

On the other hand, if the result of thresholding `(1, 1) is different from the halftone value

b(1, 1), then we would prefer to select g(1, 1) from the corresponding interval (0.0, 0.5) or

[0.5, 1.0) of values that lead to the correct b(1, 1). As we have mentioned, ideally, we should

keep the entire interval as an interval of possible values of the original image; however, in

this first algorithm, we select a single point g(1, 1) within this interval – the point which is

the closest to the lowpass filtered value `(1, 1).

In other words:

• if b(1, 1) = 0 and `(n1, n2) ≥ 0.5, then we take g(n1, n2) = 0.5− ε (where ε is a small
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positive number, e.g., the smallest positive floating point number representable in the

given computer), and

• if b(1, 1) = 1 and `(n1, n2) < 0.5, then we take g(n1, n2) = 0.5.

After producing g(1, 1), we proceed to the next pixel, etc. Once we get to the pixel

(n1, n2), this means that we have already processed the previous pixels. This means that

we have already produced the values g(n′1, n
′
2) for all the coordinates n′1 < n1 and n′2 < n2,

and, correspondingly, the values u(n′1, n
′
2) and e(n′1, n

′
2) (see the description of error diffusion

halftoning in Section I).

We want to select g(n1, n2) at the pixel (n1, n2) in such a way that:

• first, the result of halftoning g(n1, n2) is exactly the value b(n1, n2);

• second, if there are several such values g(n1, n2), then among these values, we would

like to select the value that is the closest to the lowpass filtered image `(n1, n2).

As we have mentioned in Section I, the value b(n1, n2) of halftoning g(n1, n2) is the result

of thresholding the linear combination u(n1, n2) = g(n1, n2)− g0(n1, n2), where

g0(n1, n2)
def
=

∑
m1,m2

h(m1,m2) · e(n1 −m1, n2 −m2).

So, if g(n1, n2) = `(n1, n2) leads to the correct halftoning, i.e., if the thresholding of

u(n1, n2) = `(n1, n2)−g0(n1, n2) leads to the desired value b(n1, n2), then we select g(n1, n2) =

`(n1, n2).

On the other hand, if the result of thresholding g(n1, n2) = `(n1, n2) + g0(n1, n2) is

different from b(n1, n2), then we take, as g(n1, n2), the closest value from the corresponding

interval.

When b(n1, n2) = 1, then the corresponding interval for g(n1, n2)+g0(n1, n2) is [0.5, 1.0),

so the interval of desired values of g(n1, n2) is [0.5 − g0(n1, n2), 1.0). Thus, if the lowpass

filtered value `(n1, n2) is not in this interval, we select, as g(n1, n2), the closest value from

this interval, i.e., g(n1, n2) = 0.5 + g0(n1, n2).
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Similarly, when b(n1, n2) = 0 and `(n1, n2) does not belong to the corresponding inter-

val (0.0, 0.5 − g0(n1, n2)), we select, as g(n1, n2), the closest value from this interval, i.e.,

g(n1, n2) = 0.5− g0(n1, n2)− ε.

A POCS iterative procedure. The interval consistency algorithm just described is

evaluated in a POCS iterative procedure so that its impact can be evaluated using the

Floyd-Steinberg algorithm for error diffusion based halftoning. The input halftoned image

is first lowpass filtered using a 5x5 Gaussian lowpass mask. The low pass filtering removes

the high frequency halftoning noise as well as all other high frequency information available

in the halftoned original. The image as a result of lowpass filtering is not only blurred but

is no longer a valid candidate image. That is, the difference between the original halftoned

image and the rehalftoned version is not zero. The lowpass filtered image is then processed

by the interval consistency algorithm that will make it a candidate image. This limiting

step induces some large local differences in gray level which can be fused back into the image

by a projection step that replaces the low-part of the frequency spectrum with that of the

halftone input image. This step is called frequency swapping which is implemented using

the two-dimensional DFT. The limiting and frequency swapping steps are then repeated a

few times to produce the final output image.

Summary. The related disadvantage of our algorithm is that, while it produces an image

g(n1, n2) whose halftoning produces the exact same result as the original image f(n1, n2), for

standard benchmark images f(n1, n2), the visual difference between g(n1, n2) and f(n1, n2)

is higher than, e.g., for methods from [98].
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Chapter 6

Conclusions and Future Work

6.1 Formulation of the Problem: Reminder

Statistical analysis and, more generally, statistical data processing is an extremely impor-

tant part of modern science and engineering. It is therefore necessary to use the most

adequate statistical techniques. Many traditional statistical formulas y = C(x1, . . . , xn),

e.g., the formulas for the population mean, population variance, etc., are based on the

simplifying assumptions that for some sample, we know the exact values x1, . . . , xn of the

quantity of interest. In reality, these values usually come from measurements or from ex-

pert estimates; both methods are not absolutely accurate. It is thus desirable to find out

how the inaccuracy with which we know the sample values affects the result of statistical

analysis.

In many real-life situations, we only know the upper bound ∆ on the measurement

inaccuracy. In this case, once we know the result x̃ of measuring the desired quantity, the

only information that we have about the actual (unknown) value x of this quantity is that

this value must belong to the interval [x̃ − ∆, x̃ + ∆]. Thus, it is necessary to generalize

traditional statistical formulas C(x1, . . . , xn) to the case when we only know the inputs

with interval uncertainty. In precise terms, we know n intervals x1, . . . ,xn, and we would

like to compute the range C of possible values of the given characteristic C(x1, . . . , xn)

when xi ∈ xi.

In general, this computational problem is NP-hard even for the variance. However, in

some practically important situations, it has been possible to design efficient algorithms

for computing these characteristics. The main objective of this research was to improve
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the existing algorithms and to design new algorithms for practically important situations

which were not covered by the previous algorithms.

6.2 Main Results of this Dissertation

In this dissertation, we reduce the computational complexity of several known efficient

algorithms to the complexity O(n·log(n)) comparable with the complexity of simply sorting

the given values, and in some situations, even to the linear time complexity O(n) – the

smallest possible computational complexity of any algorithm for processing n input values

x1, . . . , xn. We also designed new efficient algorithms for computing variance and other

important statistical characteristics for several practically important classes of statistical

problems.

Specifically, for the lower endpoint V for the variance V , the fastest previously known

algorithm takes O(n·log(n)) time. In the dissertation, we developed a linear time algorithm

for computing V .

The problem of computing the upper endpoint V is, in general, NP-hard. Previously,

O(n2) time algorithms were known for the cases of narrow intervals (when no two intervals

intersect), of slightly wider intervals (when for some K, no group of K intervals has a

common point), and of privacy (when every two intervals either coincide or do not intersect).

In the dissertation, we reduced the computational complexity of computing V to linear time

for narrow intervals and for the privacy case, and to O(n · log(n)) times for slightly wider

intervals. We also designed a new linear time algorithm for the case of a single measuring

instrument MI (when no interval is a proper subset of another one), and an O(nm) time

algorithm for the case of m measuring instruments, when input intervals can be divided

into m classes each of which satisfies the above single-MI no-subset property.

We produced similar results for estimating the range of the endpoints L = E − k0 · σ
and U = E + k0 · σ of the confidence interval which is often used to detect outliers (with

k0 = 2, k0 = 3, or k0 = 6). For the cases of narrow and slightly wider intervals, we reduced
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the computation time from O(n2) to O(n · log(n)). We also designed a new O(n · log(n))

time algorithm for the single MI case and a new O(nm) time algorithm for the case of m

MI.

We also describe efficient algorithms for computing the range of another important

statistical characteristics – skewness (third central moment), a characteristic important for

describing possible asymmetry of the probability distributions.

For all these algorithms, their correctness has been mathematically proven.

Our algorithms were motivated by (and applied to) several applied problems. The

corresponding applications are also presented in this dissertation.

In computer security, we deal with an interval method of preserving privacy in which

for each sensitive field of data, instead of the actual values of the corresponding quantity,

we only keep a range (interval) of possible values of this quantity: e.g., instead of the

exact age of 28, we only keep a range [20, 30]. For this application, we have developed new

efficient algorithms for estimating values of different statistical characteristics under such

privacy-related interval uncertainty.

In geosciences, we deal with the inverse problem of geophysics, where we measure the

seismic signals generated by artificial small explosions, and then reconstruct the velocities at

different 3-dimensional points from the travel times of this seismic signal. In this problem,

the existing algorithms often produce the velocities v which are outside the geophysically

known intervals [v, v] of possible values. In this dissertation, we show how to take this

interval information into account when solving the inverse problems.

In computer engineering, we deal with the problem of estimating the clock cycle in chip

design. Traditional methods for clock cycle estimation only consider interval (worst-case)

uncertainty. In reality, we often also have additional information about the mean values

of the delays in the corresponding gates and wires. In the dissertation, we show how this

information can be used to provide more realistic estimates for the clock cycle and thus,

improve the efficiency of the chips.

Finally, in 1-dimensional radar data processing, we show how we can combine the prob-
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abilistic uncertainty corresponding to measurement errors and interval uncertainty cor-

responding to finite distance resolution and thus distinguish the explosion core from the

explosion fragments.

6.3 Remaining Open Problems

In theoretical and practical results presented in this dissertation, we solved the main algo-

rithmic challenges formulated in the previous papers on statistical analysis under interval

uncertainty. However, from the practical viewpoint, there are still many interesting and

challenging open problems.

The first class of open problems comes from the fact that while we did decrease the

computational complexity of many algorithms to a reasonable O(n · log(n)) time or even

linear time, for some applications, we may need a further speed-up. Specifically, this speed-

up is important in applications like real-time control where all the computations must be

completed by the desired time, or in systems like “smart dust” microsensors which have

very small computational capabilities. In some cases, the speed-up is necessary even for

the regular computers. For example, for the case of m MI, our algorithms require O(nm)

time. Formally, such algorithms are polynomial time and thus, they are usually considered

feasible. However, when we use 10 different MI (a very realistic situation), we thus need

≈ n10 computation steps. Even for a small database of n ≈ 1000 measurement results, this

lead to an impractical amount of (103)10 = 1030 computation steps.

The second class of open problems is related to the fact that we mainly concentrated

on computing standard statistical characteristics such as mean and variance. In some

practical applications, it is also important to know the values of other characteristics such as

covariance, correlation, higher-order central moments, etc. In this dissertation, we provide

estimates for one such rather rarely used characteristic – skewness, but there are many

other characteristics for which interval bounds still need to be developed.

The third class of problems is related to the fact that in this dissertation, we mainly
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concentrated on the case when we know all the values xi with interval uncertainty. In

reality, in addition to the upper bounds ∆i on the corresponding measurement errors, we

often also have some additional information about the measurement errors: e.g., the values

which are most probably possible (case of fuzzy uncertainty), or partial information about

the corresponding probabilities (case of probabilistic uncertainty).

These cases naturally appear in practical situations. In this dissertation, we covered

several such cases from geosciences and chip design when we have to combine (fuse) different

types of uncertainty. For example, in our applications to chip design, we covered the

situation when, in addition to an interval of possible values of each parameter xi, we also

know the mean value of each of these parameters. For each specific case that we considered,

we developed a specific algorithm. However, it is still a challenge to develop general ways

of fusing different types of uncertainty.
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Kandathi, L. Longpré, and K. Villaverde, Using 1-D Radar Observations to Detect a

Space Explosion Core Among the Explosion Fragments: Sequential and Distributed

Algorithms, Proceedings of the 11th IEEE Digital Signal Processing Workshop, Taos,

New Mexico, Aug. 1-4, 2004, pp. 273–277.

[52] R. Demicco, J. Klir, Eds., Fuzzy Logic in Geology, Academic Press, 2003.

[53] L. Demkowicz, W. Rachowicz, P. Devloo, A fully automatic hp-adaptivity, The Uni-

versity of Texas at Austin, TICAM Report 01-28, 2001.

[54] A. P. Dempster, Upper and Lower Probabilities Induced by a Multi-Valued Mapping,

Ann. Mat. Stat., 1967, Vol. 38, pp. 325–339.
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[114] V. Kreinovich, L. Longpré, P. Patangay, S. Ferson, and L. Ginzburg, Outlier De-

tection Under Interval Uncertainty: Algorithmic Solvability and Computational

Complexity, In: I. Lirkov, S. Margenov, J. Wasniewski, and P. Yalamov, editors,

Large-Scale Scientific Computing, Proceedings of the 4-th International Conference

LSSC’2003, Sozopol, Bulgaria, Jun. 4–8, 2003, Springer Lecture Notes in Computer

Science, 2004, Vol. 2907, pp. 238–245
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and L. Ginzburg, Outlier Detection Under Interval and Fuzzy Uncertainty: Algo-

rithmic Solvability and Computational Complexity, Proceedings of the 22nd Inter-

national Conference of the North American Fuzzy Information Processing Society

NAFIPS’2003, Chicago, Illinois, Jul. 24–26, 2003, pp. 401–406.

[118] V. Kreinovich, G. Xiang and S. Ferson, How the Concept of Information as Average

Number of ”Yes”-”No” Questions (Bits) Can be Extended to Intervals, P-Boxes, and

135



www.manaraa.com

More General Uncertainty”, Proceedings of the 24th International Conference of the

North American Fuzzy Information Processing Society NAFIPS’2005, Ann Arbor,

Michigan, Jun. 22-25, 2005, pp. 80–85.

[119] V. Kreinovich, G. Xiang, S. A. Starks, L. Longpré, M. Ceberio, R. Araiza, J. Beck,
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